
Issue 5

October 2017
HA028882

Eurotherm PAC
Operations Viewer,
Shell Application
Internals Manual

Table of Contents Operations Viewer

1 HA028882 Issue 5

Table of Contents
Table of Contents ... 1

Key Shell Application Features .. 2
User Interface Framework.. 2
Standard Displays .. 2
Graphical Wizards.. 2
Server Redundancy ... 3
Security .. 3
Language Support.. 3

The Alarm Banner .. 4
Alarm Group Boxes.. 4
Alarm Summary ... 6
Server Alarms and Redundancy .. 7
Computer Alarm Views... 8
Using InTouch Alarms .. 8

The Button Bar ... 10
Display Navigation ... 10
List Boxes..11
Tool Tips ..11

Security .. 12
Application Security Features .. 12
Recipe Security .. 13

How We Download Recipes .. 14
What if I need to upload my recipe? .. 14

Tag Security ... 14
Station Lockdown... 15

Language Support ... 16

Graphical Wizards .. 18
Control Modules Library ... 18
InHouse Wizards.. 19

System Variables ... 21

User Variables .. 23

QuickFunction Reference .. 24

Tag Dictionary Reference ... 27

Customising Point Pages and Faceplates 28

Fixed Fields Reference .. 30
LicState and LicStateString.. 33

Key Shell Application Features Operations Viewer

2 HA028882 Issue 5

Key Shell Application Features
What is the ‘Shell Application’ and what does it provide beyond a bare Wonderware

InTouch application?

The shell application has been developed to assist users in developing a set of

screens to be used for operating their plant. The aim was to provide as many features

as possible that are common to the requirements of all users and thereby save

significant engineering effort on every job that includes InTouch view screens. Since

the initial product release efforts have been made to improve and add to the shell

application by including elements of development made on customer applications.

This does make the shell application large and, therefore, difficult to modify. This

document provides reference information on how the standard features are

implemented.

User Interface Framework
The application display area is split into three sections:

• Alarm Banner - the top section is primarily for alarm annunciation but also has

some interactive features that allow alarm pages and help screens to be called

up.

• Display Area - the centre section is the main display area and would normally

contain the 'home' display or overview by default.

• Button Bar - the bottom section is a collection of buttons and menus that allows

the user to call up both standard displays and custom displays.

Standard Displays
There are a number of standard displays that provide:

• Alarm Summary - a list of current alarms by alarm group.

• Alarm History - alarms and events as logged to a SQL database.

• Help Display - brief help on the 'User Interface Framework'.

• History Display - real time and historic trends.

• Point Pages - predefined display with tag parameter list and other tag related

data.

• Faceplates - predefined displays for operator interaction.

There are many more windows that provide support for the standard displays and

graphical wizards.

Graphical Wizards
Graphical wizards allow relatively complex graphical objects to be placed onto

displays and configured through simple dialog boxes. They are constructed using

Microsoft Visual C++ and a Wonderware toolkit. Two wizard libraries are installed

with the shell application.

InHouse Wizards - most of these wizards are used in predefined displays and do not

need to be used by a user although there are some faceplates which can be placed

onto custom displays.

Key Shell Application Features Operations Viewer

3 HA028882 Issue 5

Control Module Wizards - these wizards are designed to complement the more

complex LIN blocks known as 'Control Modules'. As well as valves and motors there

is also the 'LIN Data Text' wizard that is used to display data and also allow secured

user writes.

Server Redundancy
Computers within the system can be defined as servers or clients. The servers will

provide data and alarms for display on the clients. In almost all cases the server is

also a client i.e. the InTouch graphics is running on the system.

If two servers are configured as a redundant pair then the standard graphics will

automatically monitor the health of the servers and choose which server to use as the

source of data and alarms. There is no need for the servers to communicate because

they always provide data.

Security
Levels of access and levels of confirmation can be configured for users using

Security Manager. If security is enabled then a user logging into the View station will

have their access controlled and logged. The system does not just control access to

tags (and fields) but also to displays, recipes and to the operating system. An

interface is provided to allow a user to change their password. There is automatic

logout after a configurable period of inactivity.

Language Support
The shell application contains a script to translate displayed or logged text on the fly.

This means that the language may be switched at runtime.

The Alarm Banner Operations Viewer

4 HA028882 Issue 5

The Alarm Banner
How the alarm banner presents the alarm information to the user.

The alarm banner picture is called ZZ_AlarmBanner but there is a lot more to it than

just the picture. The data that is shown is derived from data that is sourced from one

or more servers and that data has to be transferred and interpreted before it is

displayed. There are three parts of the alarm banner that would not necessarily

reveal how they are implemented when inspected from WindowMaker:

• One is the alarm group that shows a summary of alarms across the system in

priority order in the form of alarm group names surrounded by coloured boxes.

• A closely related item is the ‘two line’ alarm summary that shows the highest

priority alarms from the system.

• Then there is the server alarm feature that will indicate if any of the servers have

a problem with providing data and alarms.

Alarm Group Boxes
There are eight alarm group boxes across the bottom of the ZZ_AlarmBanner

window. If more than eight groups contain current alarms then the user can display all

of the alarm groups by displaying the ZZ_Expanded Alarm Buttons window (there

is a button on the alarm banner for this that looks like a drop-down).

The Alarm Banner Operations Viewer

5 HA028882 Issue 5

Each of the alarm group boxes is a wizard. If the wizard is opened and the dynamic

features are examined it can be seen that there are some ‘script extension functions’

which return data about the alarm groups. The reason for the script extensions is that

they allow for much more efficient processing of the data as the collation of all the

alarm group data from the system would overload the InTouch scripting engine.

These script extension functions are written in Microsoft Visual C++ and the functions

conform to an interface standard as defined by Wonderware. The following figure

shows the flow and transformation of data from the servers to the graphic.

There are a number of steps that bring about the setting up for the alarm banner to

work, as follows:

1. Operations Server Configurator is used to configure the systems in the computer

network and the access names to be used to get data from the servers. Access

names for the data provider ‘LINDATA’ define which servers provide alarm

information from LINOPC. Access names that provide data from ‘VIEW’ define

which servers provide InTouch alarms.

LINOPC

TagDLL

Alarm
Provider

LINOPC

LINDATA

VIEW

Client PC

Server PC(s)

Alarm
Data

Alarm Fixed
Fields Data

Fixed Field
Data

$FSAlarmProvider.Banner
$FSAlarmProvider.BannerTwo
$FSAlarmProvider.BannerThree
$FSAlarmProvider.BannerFour

ZZ_Alm_Banner\SvrAlarmMsg#
ZZ_Alm_Banner\SvrAlarm2Msg#
ZZ_Alm_Banner2\SvrAlarm3Msg#
ZZ_Alm_Banner2\SvrAlarm4Msg#
 # = server number (1 to 6)

The Alarm Banner Operations Viewer

6 HA028882 Issue 5

2. When View starts it runs the script ZZEaseStartup which does a lot of

initialisation (look for the comment "This sets up access names etc…"), including

setting up the pre-built access names and all the tags in the tag dictionary to

allow alarm data to be collected. The script extension function

EaseServerAccessName is used to return information from the script extension

DLL (originally from the project database) and to give a count of servers that

need to be set up. The function EaseServerProvidesAlarms is used to determine

if there will be alarm data from the server.

Note: The script referred to here is also important for server health monitoring and

the server redundancy logic.

3. Once the reading of the data has been set up it then has to be monitored and

processed. This is done in the ‘While Showing’ script of the window

ZZ_AlarmBanner. The data from the alarm providers that is now in string form in

the tag dictionary is fed into the script extension DLL using the function

EaseUpdateBanner. Once all the banner information has been fed in then the

function EaseBannerChanged is called which re-evaluates the alarm banner

information for the whole system and indicates if it has changed. If it has changed

then the tag in the tag dictionary ZZ_ABSeqNo is incremented as a flag to the

display system. The script also refreshes the query on the ‘two-line’ alarm

summary if it is necessary (this is usually when redundancy changeovers take

place).

4. When the tag ZZ_ABSeqNo changes, the buttons on the alarm banner are

triggered to refresh because they reference that tag. The alarm buttons use the

script function EaseAlarmButtonPrio and EaseAlarmButtonName to display the

alarm button data with the correct text and colour (appropriate to the priority).

Alarm Summary
The alarm summary window in the display is often referred to as the ‘two-line’ alarm

summary. At the default resolution (1024 by 768) it will show two alarms, although it

may be scrolled to view others. The object is a standard InTouch distributed alarm

object (often referred to as a DAO by Wonderware). The colours are configured to

match the standard alarm colours used in the wizards. The only way in which the

dynamics of the alarm summary object are affected is by changing the query that is

used to update it. The alarm summary will need to query for LINDATA alarms from all

the servers (excluding the standby servers in server pairs) and also query for VIEW

alarms on the servers that have been configured with VIEW access names.

The data that drives the queries at runtime is the state of all the servers that have

been configured and the access name data that has been configured using

Operations Server Configurator. The server state is monitored by the script

QuickFunction called ZZServerCheck (see next section for more on server

monitoring). The script functions EaseServerFailed, EaseServerOK and

EaseServerHealth are used to feed data on the state of the servers into the script

extension DLL.

Once the server data has been updated then the script in the ‘On Show’ and the

‘While Showing’ areas of the ZZ_AlarmBanner window calls EaseAlarmQRefreshed

to determine if the alarm summary needs to be re-queried. This script function

actually modifies the query for the named alarm summary by directly updating the INI

file in the application folder (named almgrp.ini). The re-querying of the alarm

summary does not happen frequently and is most likely when a redundant server

changeover takes place.

The Alarm Banner Operations Viewer

7 HA028882 Issue 5

Server Alarms and Redundancy
At the top of the alarm banner window are six green boxes containing the "#" symbol

(when looked at from WindowMaker). Each box shows the state of a server at

runtime, with server 1 being at the right hand side and server 6 at the left. If a server

is completely healthy or no server is configured then nothing will be shown.

Each server box shows red if the LINOPC watchdog has failed, orange if the alarm

provider watchdog has failed and green if the alarm provider health is less than

100%. The size of the green bar indicates the server percentage health.

Which servers are to be monitored is determined by the access names that have

been configured (using Operations Server Configurator) as LINDATA access names.

All the servers that are referenced by LINDATA access names without standby

servers become servers that will be monitored. The maximum number that the

application can show is six although it is normal to have either one or two, and

systems with two would normally be dual redundant. This means that where there is

a dual redundant pair an access name is required for each of the individual servers

and one for the dual redundant pair. The reason for the single route access name

being required is that the watchdog data must be read from the server being

monitored, and this requires an access name that never gets switched to look

anywhere else.

On startup the script extension DLL reads the access name information from the

project database and constructs a list of servers to be monitored. This data is then

returned into the scripting environment in the script ZZEaseStartup using the script

extension function EaseServerAccessName that will return the names of the access

names for all the servers to be monitored. This allows the script to set up a number of

tag dictionary tags for monitoring $LINOPC.OPCWatchdog,

$FSAlarmProvider.APHealth and $FSAlarmProvider.APWatchdog. These three

items for each server are used to determine the state of each server. Before looking

at the monitoring script there is a slight complication to the start-up, in the form of

variables in the PersistentData table in the project database.

The PersistentData table in the project database is configured using the Operations

Server Configurator and the ‘System Variables’ button. The variables that can be set

are shown in the following table:

Variable Name Usage

BackOffSrvrChkInit Number of seconds after starting View before
checking the state of the server(s). To allow for
a busy system on start-up.

BackOffSrvrCheckInitOK If 0 then show server(s) unhealthy before
checking, if 1 then show the server(s) as
healthy before the first check cycle.

BackOffSrvrChk If there is a redundancy changeover, how
many seconds to wait before checking server
health. On occasions there is sufficient loading
at changeover to cause an apparent server
failure. Setting this can avoid flip-flop
changeovers.

ServerCheckRate How often, in seconds, to check the state of
the server(s). By default equal to 10, means
that it may take up to 20 seconds to detect
server failure.

The Alarm Banner Operations Viewer

8 HA028882 Issue 5

After the initialisation the script function that checks the state of the server(s),

ZZServerCheck, is called from the Application ‘While Running’ script. It is called

every second and the script then determines if it is time to check the server

watchdogs. The script reads all watchdog and health variables and then passes this

information into the script extension DLL using the functions EaseServerFailed,

EaseServerOK, and EaseServerHealth. If there has been a redundancy changeover

due to the failure or health status change of a server then the calling of the function

EaseChangedAccessName is used to reconfigure the redundant access names.

The data that is generated by the monitoring of the servers is used to drive the

graphics at the top of the alarm banner.

Computer Alarm Views
A feature exists which allows the view of alarms from a View station to be limited to a

part of the system. In order to use this feature alarm groups need to be placed into

‘Alarm Group Sets’ that represent the sections of the system (use Plant Model tool for

this). The sets may then be associated with a computer using the Operations Server

Configurator. If a computer has no sets associated with it then it will show all alarms

from the system. If one or more sets are associated with a client as a ‘Computer

Alarm View’ then only alarms from those sets will be visible.

When sets are associated with a computer the alarm summaries and the alarm

banner will be restricted accordingly. Alarms will still be visible on individual

faceplates and point pages, no matter where the tag is in the alarm groups. Most of

the logic for the restricted view is in the script extension DLL but there are some

script functions that may be used to view and control the alarm views. These script

functions are not currently used in the shell application but could be used in a custom

application. They all start EaseAlmGrp and are documented in the EASEEXT.HLP

file. An example custom application would be to enable the viewing of more alarms

by either pressing a button on the screen or on the automatic detection of another

system failure.

Using InTouch Alarms
Particularly when using third-party I/O it may be desirable to use InTouch alarms to

get alarms into the system. It is very unusual for there to be a separate alarm

provider and there is no support for one even if there was. If the user configures

InTouch tags to generate alarms then the alarms can be presented through the alarm

banner and alarm summaries.

InTouch alarms require minimal configuration. The InTouch alarm group names must

be configured in the plant model; i.e. they must be the same names as those

configured for Operations Server. There must also be an access name configured for

VIEW. This access name is used to indicate the source of VIEW (or InTouch) alarms

and data. If the access name is a dual redundant access name then the InTouch

alarms will only be sourced from one of the servers at a time. Single route access

names will cause the alarms to be always displayed from that server.

Note: The InTouch tags, because the application is used on all stations, will exist

on all the stations but the data will not be live and reliable unless they have been

configured to use remote I/O server.

The Alarm Banner Operations Viewer

9 HA028882 Issue 5

The desirable configuration is to have a single server machine generating the data

and alarms and then use the access name configured for InTouch data to access the

tags. This means that the access name for the I/O server should be a remote access

name so that all machines gather the InTouch data. This does mean that the InTouch

tags on all the stations will have the I/O data but it will not be used other than for

historic trending. The display alarms and data will always come from the server

node(s).

The Button Bar Operations Viewer

10 HA028882 Issue 5

The Button Bar
How the button bar features such as display navigation, tool tips and list boxes are

implemented.

The button bar at the bottom of the screen is the window ZZ_ButtonBar. It is the

main user interface for controlling access to displays.

Display Navigation
Once a user has configured their screens, they can use the display navigation editor

to link the displays together, starting from the Overview. The Overview display may

be different on different computers but is usually the same on all computers in a

single system. The Overview will always be shown on start-up.

The main buttons on the button bar all have script that calls the QuickFunction

ZZFunctionButton with the name of the button. All the main button functions can be

found in this single QuickFunction. A lot of the functions, including display navigation,

call the QuickFunction ZZDBlkLoad (which is short for ‘Display Block Load’). The first

argument to this QuickFunction is the type of navigation to be carried out or the

display block name. The following table shows the possible values:

Other script functions used by ZZDBlkLoad are EaseDBlkMimic,

EaseDBlkMimicName, EaseDBlkName and EaseDBlkExists. The ZZDBlkLoad

function may be used from user script with a display block name and the second

parameter set to 1 (this indicates normal operation).

ZZFunctionButton first calls ZZCanNavigate to determine if display navigation is

currently allowed. This relates to a security feature that allows the View station to be

locked when a user logs out.

ZZFunctionButton next calls ZZCustomFunctionButton, which may be used to

customise the result of pressing any of the standard buttons. If the custom function

returns a non-zero result then the standard navigation will be prevented. Other than

the standard navigation buttons ZZFunctionButton also deals with the standard fixed

displays (trend, alarm summary, alarm history, point, operator and trend groups, login

and all the menus) that can be produced from the button bar.

Value Display Shown

Overview The overview mimic (EaseDBlkOverviewMimic)

Processcell The process cell mimic for the current display

Alarm The alarm mimic for the current display

Trend The trend mimic for the current display

Left The navigate left mimic for the current display

Right The navigate right mimic for the current display

Up The navigate up mimic for the current display

Down The navigate down mimic for the current display

Back The previous display

Mimic Display the current mimic (display block)

The Button Bar Operations Viewer

11 HA028882 Issue 5

List Boxes
List boxes, or menus, can be produced from many of the buttons on the button bar. It

is worth mentioning here because the method by which it is populated and then an

option is selected is not obvious. In all cases a variable is set to indicate the type of

list required and then the window ZZ_List Box is shown.

In the ‘On Show’ script of ZZ_List Box the type of list box required is tested and the

list box is then populated with the options. A user wanting to implement their own list

box just needs to add another type to this list and append the script to populate the

list box.

When the user selects an item in the list box the selected entry is written to the tag in

the tag dictionary named ZZ_Item_Sel. This then triggers the Data Change Script for

ZZ_Item_Sel where the list box type is again tested and the action of the selection is

carried out.

This sequence of events always starts with script that is something like:

Hide ("ZZ_List Box");

EaseSetString("ListBoxType", "MimicSel");

CALL ZZShowAtRel ("ZZ_List Box",0, -145);

This example is for the mimic selection list box.

Tool Tips
As the mouse is passed over the button bar in View tool tips appear in order to show

the user what will happen when the mouse is clicked. The starting point of this is the

‘On Show’ script for the ZZ_ButtonBar window.

The Wonderware script function WWContext is called. It specifies a region of a

window that will cause a value in the tag dictionary to be set to a string value when

the mouse is over that region. In this case the tag is ZZ_DBlk\Description.

When the Data Change Script for ZZ_DBlk\Description is triggered the script then

works out which region the mouse is over and sets the tool tip text up and then shows

the ZZ_ToolTip window in the appropriate position. Tool tips could be added to this

from any position on the screen so long as they do not clash with other tool tip areas.

Security Operations Viewer

12 HA028882 Issue 5

Security
Users wanting security set it up using Security Manager but how does it work within

the shell application and how can new security features be implemented?

Once a user has configured security and enabled it then there are features within the

shell application to support user logins and protection of the appropriate data, with

logging of any attempted breaches in security. There are also security features within

Security Manager, which have been created for customising the security of the shell

application itself.

Application Security Features
The following table lists the security features that can be found in Security Manager

(in a user group on a zone containing ‘Operations Server PCs’):

Security feature Usage

Sign Can user sign for changes? Applies to any
change that requires a signature.

Authorise Can user authorise changes? Applies to any
change that requires authorisation.

Print Is the user allowed to print the screen? (See
Key Script - "Ctrl+p")

TagEdit Is the user allowed to run TagEdit? (See
ActiveX Event Script "TagEditTag")

Operator Point Display Does the user see operator point pages
instead of the standard point pages? (See "On
Show" script for window ZZ_Pointpage).

Export historical Trend Is the user allowed to export historical trend
data? (See disable state on button of
ZZ_HistTrendExport window).

Faceplate Configurator Can the user save faceplates? (See Action
script on save button on window
ZZ_Faceplate_Config).

Inactivity timeout After how many minutes is the user logged out
if no keyboard/mouse activity? (See Condition
Script "$InactivityWarning == 1").

Display access level Defines access to display block mimics
(implemented in script extension DLL and
ZZDBlkLoad QuickFunction).

Synchronise Files Can the user manually synchronise files?
(See the Action script on "Synch File" button
on ZZ_ABOUT display).

Override Server
Redundancy

Can the user force fail servers? (See the
Action script on "Fail Comms to this Server"
on ZZ_ABOUT display).

Task Switch Can the user task switch from view? (See
Action script on "Task Switch" button on
ZZ_login display, and ZZLogin
QuickFunction).

Security Operations Viewer

13 HA028882 Issue 5

Recipe Security
In the Security Manager, a list of recipes may be defined, each with an associated

user name that is the name of the user to carry out the recipe writes. For a logged in

user to be able to download a recipe they must have the ‘Recipe Download’ privilege

and the recipe must be in the list of recipes that the user's security group has access

to. The user carrying out the writes would be expected to be a system user.

Operator Group Global Can the user save other user's operator group
displays? (See Data Change script
ZZ_Item_Sel).

Debug Can the user switch on script trace? (See the
buttons on the ZZ_EaseErrors window).

Operator Groups Can the users save their own operator
groups? (See Data Change script
ZZ_Item_Sel).

Trend Global Can the user save other user's operator trend
displays? (See Data Change script
ZZ_Item_Sel).

AlarmHistMaxItems Can the user increase the maximum entries
on the alarm history display? (See the bottom
right hand button on ZZ_AlarmHistoryFilter
window).

Trends Can the user save their own operator trend
displays? (See Data Change script
ZZ_Item_Sel).

Recipe Download Can the user download recipes? (See the
QuickFunction ZZ_RecipeLoad).

Global Alarm
Acknowledge

Can the user acknowledge multiple alarms?
(See the "Ack Display" button on the window
ZZ_AlarmPage).

Faceplate Modify Can the user modify faceplates? (See Key
Script "Ctrl+Shift+f").

Change Language Can the user change the display language?
(See the "Language" button on the
ZZ_ABOUT window).

Offline data writes TagEdit security feature.

IO data writes TagEdit security feature.

System User writes What level of logging of writes for system
users only? LINOPC security feature. Allows
the inhibiting of logging of writes which is
needed where OPC clients are making
continuous writes.

Custom1-Custom5 Five spare features for custom use. These are
all Yes or No access.

Custom6-Custom10 Five spare features for custom use. These are
all of Confirmation Level type so that required
signatures may be requested.

Security feature Usage

Security Operations Viewer

14 HA028882 Issue 5

The recipe name can be pattern matched, which means that wildcard characters may

be entered. The format of the recipe name is <recipe file>/<unit>/<recipe> (e.g.

‘MyRecipes.csv/Boiler1/VeryHot’). When the user attempts to download a recipe the

first entry that matches in the list of recipes will allow the download and the system

user for that entry will be used to carry out the writes. The simplest entry for recipes

that will allow the user to download any recipe is a single asterisk (*).

How We Download Recipes

Because of problems with the InTouch RecipeDownload function when using access

names to remote I/O rather than the tag dictionary, a method for downloading recipes

has been implemented. This is the QuickFunction ZZRecipeLoad, which then calls

ZZSystemRecipeLoad. Using this, we have good control over the user name used for

carrying out the writes. There are major problems, however, if there is a requirement

to upload recipes because we have not implemented the equivalent of RecipeSave

and, presumably, RecipeSave would have the same problems as RecipeLoad.

What if I need to upload my recipe?

If there is a requirement to upload a recipe then using the standard RecipeSave is the

only easy way to achieve it. This means that the recipe must only use tags in the tag

dictionary and then RecipeLoad and RecipeSave functions may be used. All the tags

in the tag dictionary should use the same access name and this access name should

NOT be one that is entered in Operations Server Configurator. The reason for this is

that the access names that the system is aware of get reconfigured when a user logs

in or out. The recipe writes should not come from the logged in user but from a fixed

user name. In order to inform the underlying security which user is carrying out the

writes the access name topic should be set to

<Node>@<AccessName>@<UserName>

(e.g. ‘ThisPC@RCPDATA@ESDataSrv’). If security is disabled then the access

name setup is unimportant.

Tag Security
In Security Manager the level of access a user has to tag security areas can be

defined for each security zone. A user will be allowed to write to items on tags in the

security areas if their access level is greater than or equal to the restriction placed on

the item. In order to view and/or change the access level on a field use the Tag Profile

Configurator.

There are three QuickFunctions that are used to write to LIN tag data. They are

ZZSecureTextWrite, ZZSystemWriteTagValue and ZZWriteTagValue.

ZZSecureTextWrite is used by many of the standard user interface (e.g. point

display) to put up an appropriate styled data entry window based on the type of the

data being written to. Once the user enters a value the Data Change script

ZZ_Write_String performs the security checks, gets any user confirmation and then

either carries out the write or shows an error message.

ZZWriteTagValue effectively calls the ZZ_Write_String script because the value to be

written is passed into the script function as a string. This function can be used on a

custom button for a user to write to a LIN field.

ZZSystemWriteTagValue is a version of ZZWriteTagValue that is given the name of

the user to do the write and just does it. This is for behind the scene script that might

be automatically raising an alarm by writing to a digital in an instrument, for instance.

Security Operations Viewer

15 HA028882 Issue 5

Station Lockdown
When no user is logged in or the currently logged in user does not have the privilege

to task switch then the user should not be able to get from View to the operating

system. This is handled by some script at the bottom of the Application ‘While

Running’ script. Two new script extension functions have been introduced called

SecureView and UnsecureView that are used to increase security beyond the

standard InTouch features. When View is secured it will be brought to the front so that

if the user has switched to another program and then the automatic logout takes

place, the focus will be forced back to View.

Another security feature exists in the ‘Management Data’ for a security zone called

Lockout Level. This can have one of the values ‘None’, ‘No Navigation’, ‘No Alarms’

and ‘No Displays’. This represents the extent to which View is locked out when

nobody is logged in. The level of lockout is progressively increased so that each

option includes the previous options.

• ‘No Navigation’ prevents any change of display,

• ‘No Alarms’ prevents any navigation and hides the alarm information in the alarm

banner, and

• ‘No Displays’ is the same except the main display is blanked.

For all lockout levels other than ‘None’ and ‘No Display’, the overview display is

restored. The script behind this is in the ZZLogon QuickFunction and at the bottom of

the ZZ_AlarmBanner window ‘While Showing’ script. The script extension DLL also

applies logic to hide the alarm buttons when the lockout level is ‘No Alarms’ or ‘No

Displays’.

Language Support Operations Viewer

16 HA028882 Issue 5

Language Support
How to configure and extend the application multi-language support.

Language support has been implemented in the shell application in a relatively

simple fashion because there is no easy support of special fonts such as Japanese or

Chinese. All the displayed and logged text in the shell application can be replaced

with alternative language representations.

There is a single script extension function that is used to convert text called

Translate. A string is passed into the function and the function returns the translated

string. The input string can surround text that should not be translated with %n where

n is a ‘parameter’ number. This is so those context-specific object names such as

tags and names are not translated but do appear in the resultant string in the correct

position. For example:

Translate("The user %1Joe Barrett%1 has just written %243.2%2 to

%3TIC0101.SL%3");

When the Translate function is called it converts the string into a ‘parameterless’

form, which in this example would be:

"The user %1 has just written %2 to %3"

This string is then looked up in the INI file as defined by the currently selected

language. The entry in the INI file would look like this:

The user %1 has just written %2 to %3=%2 has just been written to

%3 by %1

The looked up string is then reconstituted with the parameters to give the final output

string:

43.2 has just been written to TIC0101.SL by Joe Barrett

In this example the language has not been translated but transformed. Some users

may want to use translation in this way if they would prefer different wording and do

not want directly edit the shell application.

The language file to be used is set automatically on start-up based on the regional

settings on the computer. Each language has a three letter code that is used to prefix

the file name LANG.INI. The name of the file being looked for is logged to the

Wonderware logger on start-up. If the file is not found then the three letter prefix is

reduced to the first two letters (which is the same for all variants of a language) and

this file is looked for, and again logged to the Wonderware logger. If this is not found

then there will be no translation.

A template file is provided to make it easier to create the language file that is called

ENLANG.INI. Most of the text that needs to be translated is in this template file. This

should be copied to the appropriate language file name (the list of language prefixes

is in the EASEEXT.HLP file in the InTouch folder under the topic SetLanguageID).

The translations may then be entered.

Language Support Operations Viewer

17 HA028882 Issue 5

If a menu of languages is required for the application then the file EPALANG.INI

needs to be edited. This lists the available languages. The ZZ_ABOUT window has a

button on it for allowing the user to change the language. The script function

SetLanguageID is used to switch the language on the fly. Pressing the ‘Home’ key on

the keyboard will cause all the windows to refresh their text (see the Key Script

‘Home’).

Graphical Wizards Operations Viewer

18 HA028882 Issue 5

Graphical Wizards
How to use the standard Operations Server Wizards on InTouch pictures.

There are two standard wizard libraries supplied with the system. One is called

Eurotherm Control Modules and the other is Eurotherm InHouse. The Control

Modules library contains wizards that are most likely to be used on a customer

system and the majority of them apply to specific control modules. The In-house

library mostly contains wizards that are used in the standard graphics but it does

contain two faceplates that may be used on custom pictures.

The user may use any of the wizards on pictures but may also need to deploy

updated wizards from the in-house library as part of a software upgrade to the

InTouch application.

Note: These wizards cannot be deployed into a bare InTouch application and are

designed to be deployed into a Operations Server application that already has

supporting tags and script functions that the wizards make use of.

To be able to use the wizard libraries they must first be ‘Installed’ into WindowMaker.

This can be done from the menu Special > Configure > Wizard/ActiveX

Installation... Then select the required library from the list of uninstalled wizards at

the bottom of the dialog. Install the library by clicking on the Install button.

Control Modules Library
The control modules library contains the following wizards which are designed for

use with specific control modules. They all have an icon that represents the shape of

the item they apply to and indicate the current state and mode of the control module.

They are designed so that they can be connected into a pipe on a mimic and some

have alternate formats (e.g. vertical and horizontal) so that they can be arranged

sensibly on the picture. The library appears as Eurotherm CtrlMods in the

WindowMaker Wizard Selection dialog.

The PushButton wizard is designed to help the user implement security checks

against an operator action. The wizard allows a number of different security check

types which allow security to be applied even when there does not appear to be a

standard feature to allow it. The wizard will create a button with action scripts and

expressions attached to it. If the user wishes to put the same checks on a different

graphical object then they should create the button using this wizard and then copy

the script onto the appropriate object. The following table lists the type of security

checks that the wizard provides.

Wizard Name(s) Control Module

Valve Vlv1In or Vlv2In

Motor, Stirrer, Heater Mtr3In

DMS DgManSt

AMS AnManSt

3WayValve Vlv3Way

ControlValve PID or PID_CONN or PID_LINK

Graphical Wizards Operations Viewer

19 HA028882 Issue 5

The LIN Data Text wizard displays a single value from a LIN instrument. It will

indicate loss of communications (with @@@) and bad data (with ????). The format,

justification and colour (foreground and background) of the data can be defined. A

visibility expression may be entered and an option to link the item to a point page

display is available. The point page option causes the current point page to be

updated when the item is clicked so that if the current point page button (or F4) is

clicked then the point page for the item is shown. The item can also be made

writeable so that the operator may write to the item by clicking on it (this may also

change the current point page at the same time).

Earlier versions of the Control Module Wizards produced pictures of differing sizes.

When upgrading these earlier Wizard versions they may lose their proportionality.

This can be corrected, however, by editing the EuroWiz.ini file. Simply add the

following to the EuroWiz.ini file.

[Control Modules]

FixedSize=1

InHouse Wizards
The InHouse Wizards library mostly contains wizards with special functions that are

used on the standard displays. There are two faceplate wizards called Mimic Fascia

and Small Fascia that are designed for use on customer pictures. They reside in the

same library because they share code with the Fascia wizard (strictly for use only

where it has already been applied). The two faceplate wizards allow the user to

select the tag and point type to be used although if default type is selected the wizard

will derive the type from the project database. At runtime they provide buttons for

mode changes and value changes (on outputs and setpoints) as well as the ability to

call up the point page.

Security Option Details

No Security Checks No security checks applied.

Confirmation Only The operator will be asked if they are sure that
they want to carry out the action.

Display Access Level The operator's display access level (as
configured in Security Manager) is checked
against the entered value and then the
subsequent level of confirmation will be
requested.

Application Feature The entered Application Feature is checked to
see if the operator has access and what level
of confirmation is required. There are a
number of Application Features in Security
Manager (see Chapter 4, "Security.").

Tag Security The operator is allowed access if they have
access to the Tag.Field as entered onto the
wizard. The confirmation level is also
determined from the security on the tag and
field.

Graphical Wizards Operations Viewer

20 HA028882 Issue 5

Some of the standard wizards will respond to any alarm colour scheme changes on

the system. There is an INI file within the application folder named EuroWiz.ini that

may be configured to change alarm colours and alarm colour band thresholds. If

EuroWiz.ini is modified in any way then the wizards will need to be re-deployed

(double-click and OK each one) to pick up the changes. This applies to the all the

fascia wizards and the Alarm Button wizard. The standard displays which are

affected are ZZ_Fascia*, ZZ_PointPage, ZZ_AlarmBanner and ZZ_Expanded

Alarm Buttons. When re-deploying wizards it is best to select (double-click) the

wizard while holding down the shift key because this prevents it from being

accidentally moved.

System Variables Operations Viewer

21 HA028882 Issue 5

System Variables
How to make use of the System Variables in Operations Server Configurator to

customise the application.

If you run Operations Server Configurator you will see a button on the main page

labelled ‘System Variables...’. If this is selected a table of variables is shown. All of

these variables allow the InTouch application to be set up and/or customised. The

table below lists the variables and how they should be used. Each variable has a

type, most of them being ‘ViewConfig’. The type specifies which package the variable

is used in, where ‘ViewConfig’ means the InTouch application. In the case of the

InTouch application the same variable may be entered with the type as the name of

the computer instead of ‘ViewConfig’ to give a computer specific value to a variable

rather than a global.

Variable Usage

AlmHistDateFormat Date Format for Alarm History ActiveX - not normally used (see
LHAlarmObjects.hlp for details, in index as "DateFormat
Property").

AlmHistPrefixOnTag Prefix on tags logged by the alarm provider, not normally used.

AlmHistTypeIsLIN Use LIN alarm name in the alarm type column when logging or the
equivalent InTouch type. Normally ‘Yes’. Can be ‘No’.

AlmHistValStrType The contents of the value string for alarm messages. Can be
‘AlmThenVal’ (default), ‘ValThenAlm’ or ‘ValueOnly’.

BackOffSrvrCheckInitOK When the shell application starts up does it indicate everything
healthy before it knows the state of the servers? Default 0 (=No).

BackOffSvrCheck How many seconds to wait before checking the servers again after
a server failure. Can prevent failovers caused by failovers. Default
0.

BackOffSvrCheckInit How many seconds to wait before checking server status on
startup. Can prevent false failure detections and allow a server to
detect itself as healthy on startup. Default 0.

EaseHealthDeadband Percentage by which one server must become healthier than the
other to allow a changeover. Does not apply when one is at zero.
Prevents flip-flopping.

ServerCheckRate The frequency in seconds at which servers are checked. Default
10 seconds.

bAlarmGroupsAsOpGroups PCView. Operator Group names are restricted to the Alarm Group
names. Default 0 (=No).

bTrendAlarmGroups PCView. Causes the Trend list to display alarm group names so
that you load/save trends by alarm group name. Default 0 (=No).

bTrendLink PCView. Use Canary Trends instead of InTouch/InSQL.

bOpGroupHidesPrevious Does the operator group obscure (1) the current picture or overlay
it (0) ?

bPreventOpGroupConfig Do not allow any operator group configuration from View (1 = Yes,
0 = No)

System Variables Operations Viewer

22 HA028882 Issue 5

DisableFasciaConfirms Prevent the default confirmation dialog when using buttons on the
standard faceplates. Applies when security is disabled. Default 0
(=No).

EnableQuickNavigation Enables the ‘Quick Navigation’ display for mimics. Default 1
(=Yes).

QuickNavigationXCoord The X coordinate for the initial position of the quick navigation
window top left in 1024 scale screen. Default 874.

QuickNavigationYCoord The Y coordinate for the initial position of the quick navigation
window top left in 768 scale screen. Default 85.

InactivityTimeoutWarning Time of inactivity in seconds after which data entry dialogs are
closed. Default 60 seconds. Automatic logout times configured in
Security Manager.

OverviewFallbackTime Time of inactivity in seconds before automatically reverting to the
overview. Default 0 (=disabled). Superseded by ‘Lockout Level’ in
Security Manager when security is enabled.

InitialChartLen The length in minutes of the historic trend display when initially
displayed. Default 10 minutes.

MaxChartLen The maximum length in days of the historic trend chart. Prevents
potential crashes when excessive lengths are used but may be
increased. Default 1 day.

OnLineTagBrowserHierarchy An initial point in the browse hierarchy (a string) for the on-line tag
browser. Not normally used.

PointPageListMaxItems The maximum number of tags to list in the point page (F4) button
menu. Default 10.

Review_Installed Is the ‘Tamperproof Alarm History’ display enabled. Default 0
(=No).

Review_Path The path to the Review database, including the database name.
The full path to and name of the Review database used by the
‘Tamperproof Alarm History’ display.

TrendInSQLSvrDSN The DSN of the primary trend InSQL server. Only used for InSQL
trend displays. Default ‘’ (not setup).

TrendInSQLSvrBackupDSN The DSN of the backup trend InSQL server. Only used for InSQL
trend displays. Default ‘’ (not setup).

TrendInSQLSvrUser The user name to login to the InSQL server to get trend data.
Default wwUser.

TrendInSQLSvrPswd The password to login to the InSQL server to get trend data.
Default wwUser.

ZZMHPLogErrors Indicates if errors that occur when logging messages should be
logged as messages themselves (a diagnostic aid). Default 0
(=No).

Variable Usage

User Variables Operations Viewer

23 HA028882 Issue 5

User Variables
How to make use of the User Variables in Operations Server Configurator to

customise the application.

If Operations Server Configurator is run, a button on the main page labelled ‘User

Variables...’ is shown. If this is clicked, a table of variables is shown. All of these

variables allow the system to be customised and only differ from ‘System Variables...’

in that they do not directly apply to the InTouch application, but are used by other

programs. The table below lists the variables and how they should be used. Each

variable has a type, where ‘Alarms’ is for the alarm provider, ‘InTouchTrend’ is for the

build of InTouch trends and ‘ProjectBuildFlag’ will appear on the ‘Build’ tab of the

project properties dialog.

Variable Usage

CommsPriority Alarm provider can generate communications alarms when it
cannot establish communication with a block/instrument. This can
be set to a value between 0 and 15 inclusive. Default 15.

OneAlarmPerBlock Default 0. Set to 1 and alarm provider will only show the highest
priority alarm. Currently shows all alarms on a block at the same
time.

DeadbandAbsoluteValue Tag builder will use this to set up the deadband on trend tags.
Default 1.0. The smaller of the two deadband calculations is used.

DeadbandFractionOfRange Tag builder will use this to set up the deadband on trend tags.
Default 0.005 (= 0.5%). The smaller of the two deadband
calculations is used.

DontBuildBlankUICTags If there is no tag in the comment on the channel ‘Type’ field in a
clone file then don’t automatically build a tag in the project
database. Default = 1 (Yes).

QuickFunction Reference Operations Viewer

24 HA028882 Issue 5

QuickFunction Reference
How to make use of the Quick Functions in the InTouch application and which ones

not to use.

The shell InTouch application has a large list of QuickFunctions, all starting with ‘ZZ’

to push them to the end of the list, which are used by the standard displays. Many of

these functions are useful for implementing custom features. Others, however,

should never be used and are there to be called by other QuickFunctions. The

following table lists the functions that can be used and if a function is not listed in this

table then do not attempt to use it. This is a fairly brief reference but most of the

functions have useful comments in them about what they do and how to use them.

QuickFunction Name Usage

ZZApplicationCustomStartup Normally empty. This function is called at startup and on refresh of
the application and is to allow customisation without changing the
standard startup script ZZEaseStartup. Normally reserved for
initialisation of variables, do not expect any I/O data to be
available.

ZZCanLaunchProgram Tests to see if a user has the privilege and the state of the
application allows for the launching of another program. Only
applies to programs which will put up a user interface on top of the
Viewer. Only parameter is the program name which will be used in
displayed messages in the event of access being denied.

ZZCanNavigate The ‘Lockout Level’ security feature is implemented by this
function. For custom buttons on pictures that should be inhibited
then call this function in the Action script.

IF 1 == ZZCanNavigate() THEN

ZZCustomFunctionButton Normally empty. This function allows custom script to be
associated with buttons on the standard button bar. Setting the
return value to 1 inhibits the standard script on the button.

ZZCustomLogin Normally empty. Can be used to take custom action when a user
logs in.

ZZDialogStringEntry Ask the operator to enter a string. Parameters are default value, a
prompt, a description and the X and Y top left coordinates. Returns
1 if a string has been entered and the value of the string is
EaseGetString("DialogStringEntry").

ZZDisplayAlarmSummary Display an alarm summary. Only parameter is the group name.

ZZDisplayCustomAlarmSummary Allows the alarm group buttons to be customised. Takes the button
number (1 to 96) as an argument. Could be used for an alternative
to the alarm summary display. Returns 1 to prevent the standard
display. To get the group name use
EaseAlarmButtonName(ButtonNumber).

ZZDisplayMimic Standard function for calling up pictures using a display block. Use
this to call up pictures from custom buttons. Parameter is the
display block name. Using this function will maintain all the up,
down, previous and next references and implement any display
access security.

ZZLINBlockHelp Would not normally be used for customisation but could be used to
implement a custom text-based pop-up help system.

QuickFunction Reference Operations Viewer

25 HA028882 Issue 5

ZZLogEvent Use to log an event to the alarm history and, possibly, tamperproof
audit trail. Is used by the standard application to log errors and
actions but could be used to log custom messages (see function
for parameter details).

ZZLogMessageBox As ZZLogEvent but also show a message box.

ZZMHP See chapter on Message Handling Package.

ZZOpenPDFFile Launches Acrobat Reader and opens the specified file. Can also
jump to a named destination in the file. Has no in-built security so
remember to put a security test in if required.

ZZPushButton This script allows the user to perform either a single write, a recipe
download or run a script - whilst a given condition is active.

ZZPushButtonCustomScript This function is called from ZZPushButton and is used to run
customised script from a pushbutton dialog.

ZZPushbuttonMultiWrite Allows multiple writes to be associated with a single user action.
ZZPushButtonSetupTag should be called once for each value to
be written before calling this function.

ZZPushButtonSetupTag Call this to setup a tag/value pair that will be written by
ZZPushbuttonMultiWrite.

ZZRampField This script is used to display a ramp input window for a numeric
field. A ramp input is not the default entry window for any field
types so it has to be forced if it is required.

ZZRecipeLoad Used to download an InTouch recipe. Works with remote reference
I/O whereas the standard RecipeLoad will not.

ZZRecipeSave Puts security around the standard RecipeSave. Will not work for
recipes with remote reference I/O.

ZZRestart Reset the application to initial state. Re-displays all the windows.
This is normally associated with the pressing of the Home key.

ZZSecureTextWrite This function is used to provide a dialog entry for writing a value to
a LIN Tag and allows configurability for the tag description and
discrete button text. The word Secure is there to imply that
standard security will be applied to the write request.

ZZShouldILogThis Not just for logging. On a multi node system using NAD, scripts
written on the configuration station will run on ALL clients. If
background scripts are used to perform actions like recipe
downloads, unless otherwise catered for, all clients will perform the
download. This script determines if this node is the first available
server to deal with such an event.

ZZShowAt Used to show a window at coordinates (centre) but scaled
according to the screen resolution (relative to 1024 * 768). Only
required where multiple resolutions are used in the system.

ZZShowAtRel As for ZZShowAt but relative to the current mouse position.

ZZShowTopLeftAt Used to show a window at coordinates (top left) but scaled
according to the screen resolution (relative to 1024 * 768). Only
required where multiple resolutions are used in the system.

ZZShowTopLeftAtRel As for ZZShowTopLeftAt but relative to the current mouse position.

ZZShowDialogWindow See chapter on Message Handling Package.

ZZShowMessageBox Display a message box with optional timeout.

QuickFunction Name Usage

QuickFunction Reference Operations Viewer

26 HA028882 Issue 5

ZZShowPointPage Show the point page for the specified tag.

ZZSynchroniseFile This function is used to synchronise modified files in the local
application with the one in the master application directory and the
other computers in the system. To be called after the file has
changed/been saved on disk.

ZZSystemRecipeLoad Download a recipe using a specified user. To perform a recipe
download as part of the application as opposed to a user
requested recipe download.

ZZSystemWriteTagValue This script should only be used to perform secure writes that are
not linked to the operator, e.g. background scripts not initiated by
an operator.

ZZTagType This script is used to parse a tag of the format
AccessName:Tag.Field.SubField or any combination. Potentially
useful in general script functions. Used by the standard script
functions.

ZZUserAccessConfirm Used to check if a user has access to an ‘Access Right’. Will get
the necessary signing/authorisation if required. e.g.

IF 1 == ZZUserAccessConfirm("Custom1", "Open Front Door",
"Are you sure ?", "") THEN

ZZWriteEaseValue Allows the user to set a global variable via a dialog.

ZZWriteTagValue To perform an input-less write to an I/O point from script using the
currently logged in user.

ZZXScale Scales an X coordinate from 1024 resolution to that on the current
monitor. Only required where multiple resolutions are used in the
system.

ZZYScale Scales a Y coordinate from 768 resolution to that on the current
monitor. Only required where multiple resolutions are used in the
system.

QuickFunction Name Usage

Tag Dictionary Reference Operations Viewer

27 HA028882 Issue 5

Tag Dictionary Reference
What are the tags in the tag dictionary used for and which ones can be used for

customisation?

The shell InTouch application has some predefined tags, all starting with ‘ZZ’, that are

required for the standard displays to operate. They would not normally be used by

custom script but some can be used for reading and writing temporary data and

others may well be useful for monitoring purposes. The table below shows the tags

that could be useful in customising an application. There are many other tags

beginning with ‘ZZ’ which are all important to the standard application and should not

be used in custom script.

Tag Name Usage

ZZ_Node Read only. Message containing the name of the local computer.

ZZ_Shutdown Read only. If this is set to 1 then View will shut down.

ZZ_Write_Mode This variable determines what the main interface for user entry is
going to be. This affects the way dialogs appear. Possible values
are ‘Mouse’ (default), ‘Keyboard’ and ‘TouchScreen’. This can be
changed permanently to match the input mode on the system or
changed in ZZApplicationCustomStartup if it varies from screen to
screen.

ZZDiscreteTag Read/write. Memory discrete for temporary storage of data where
functions require a tag rather than a value.

ZZIntegerTag Read/write. Memory integer for temporary storage of data where
functions require a tag rather than a value.

ZZMessageTag Read/write. Memory message for temporary storage of data where
functions require a tag rather than a value.

ZZRealTag Read/write. Memory real for temporary storage of data where
functions require a tag rather than a value.

Customising Point Pages and Faceplates Operations Viewer

28 HA028882 Issue 5

Customising Point Pages and Faceplates
Point pages and faceplates can be customised to show alternative names for fields,

different fields and different layouts.

The standard point display and faceplates support a level of customisation. Some

aspects of customisation can now be controlled through the Tag profile Configurator

that can be launched by double-clicking the ‘Tag profiles’ icon in the root of the

project. The profiles allow, amongst other things, fields to have different displayed

names and different enumeration. The displayed names will appear on point pages

and faceplates instead of the actual field name. Part of a profile is the Point Type

that will normally be set to ‘default’.

The point type is used to load the point page configuration file, as follows:

1. Does the file of name <point type>.ini exist in the PtPgCnf folder below the

application folder?

Note: If it is ‘default’ then skip next step and go to step 3.

2. If yes, then use that file when loading the point page.

3. If no, then use the <block type>.ini file (which should always be there).

As a rule, the point page INI files that are provided as standard should not be edited.

If they are then the changes may need to be re-made after a software upgrade. The

INI files will appear something like as follows (extracts from PID.ini):
[Alarms]

Count=6

[FieldNames]

Field1=Mode

Field2=Alarms

Field3=FallBack

Field4=

.

Field28=SelMode

.

.

[SelMode]

Count=8

SubField1=SelHold

SubField2=SelTrack

SubField3=SelRem

SubField4=EnaRem

SubField5=SelAuto

SubField6=SelMan

SubField7=

SubField8=SelFMan

.

.

[TrendPoints]

TrendPoint1=PV

TrendPoint2=OP

TrendPoint3=SP

Customising Point Pages and Faceplates Operations Viewer

29 HA028882 Issue 5

The [Alarms] section gives the alarm count that would not normally be changed. The

list of [FieldNames] defines which field is shown at which position on the point page,

where the odd numbers form the first column and the even numbers form the

seconds column. Field2 is always ‘Alarms’ and changing it will have no effect. For

each field that has sub-fields there is a section that contains the names of the

sub-fields and the section has the name of the field (see SelMode in the example

from PID.ini). The final section of the INI file is [TrendPoints] which allows fields to be

allocated to pens on the point display, the first four of which will be displayed while

other pens can be allocated at run-time.

If the appearance of a faceplate is to be modified then there is a simple tool that can

be accessed from View while running the standard application (and, therefore, one

derived from it). Pressing ‘Ctrl’ and ‘Shift’ and ‘f’ keys at the same time can access it.

The name of a faceplate can be entered at the top of the display and then an icon can

be clicked to load the faceplate. The parameters, which affect the appearance of the

display, can then be modified and there is a Refresh button that allows the changes

to be tested. The standard faceplates are not normally modified so it is recommended

that the name of the new faceplate is entered before clicking on the Save icon. This

faceplate can then be associated with a tag from the TagEdit display by modifying

the name on the ‘FacePlate’ field on the ‘SCADA’ tab. If a standard faceplate is

changed/corrected then there is a risk of losing the change on an upgrade. Because

all the faceplates are held in the InTouch recipe file ZZ_Faceplate.csv in the

application folder it will be necessary to copy the contents into the new

ZZ_Faceplate.csv file when the application is upgraded.

Fixed Fields Reference Operations Viewer

30 HA028882 Issue 5

Fixed Fields Reference
What data can be read from the system using fixed fields and what items they apply

to.

Fixed fields provide a means of addressing data that is related to instrument data but

not directly available from the instrument. The data may be derived from instrument

data or may come from another part of the system, very commonly from the project

database. Tags are created in the project database and there is much tag related

data that can be read and sometimes written using fixed fields. The fixed fields may

be used as part of an item reference string from within InTouch or any

SuiteLink/DDE/OPC client that is connected to the LIN system (meaning the LINData

SuiteLink driver or LINOPC). There are two top-level classes of fixed field, one being

‘System fixed fields’ that have a fixed syntax, the other being ‘Fixed fields’ that are

applied to tags or blocks.

Note: If there is no project database then only one of the fixed fields will be

available, namely ‘$LINOPC.OPCWatchdog’.

The systems fixed fields are shown in the following table. Some are unlikely to be

used in general but are used by the system internals. Writeable fields are shown in

bold text, like this.

System Fixed Field Usage

$AlarmGroupNNN.TotActAl The total active alarms on alarm group NNN (= group name or alarm
group ID).

$AlarmGroupNNN.TotUnackAl The total unacknowledged alarms on alarm group NNN (= group
name or alarm group ID).

$AlarmGroupNNN.TotAl The total (active or unacknowledged) alarms on group NNN (= group
name or alarm group ID).

$AlarmGroupNNN.GrpDescription The description of alarm group NNN (= alarm group ID).

$AlarmGroupNNN.GrpIn Indicates if any active alarms on group NNN (= group name or alarm
group ID). 1 = Yes, 0 = No.

$AlarmGroupNNN.GrpUnAck Indicates if any unacknowledged alarms on group NNN (= group
name or alarm group ID). 1 = Yes, 0 = No.

$AlarmGroupNNN.GrpPriority The effective priority of group NNN (= group name or alarm group ID)
= 16 * GrpUnAck + highest current alarm priority

$AlarmGroupNNN.GrpName The name of group NNN (= alarm group ID).

$AlarmGroupNNN.TotNewAlarms A counter of new alarms which increases every time there is a new
alarm in the group NNN (where NNN is the alarm group ID or the
group name). Once it reaches 32767 it will return to 1.

$EASEConfiguration.Security Is security enabled? 1 = Yes, 0 = No.

$EASEConfiguration.AlarmGroupSeq Alarm group sequence numbers from project DB. Changes when
alarm groups are reconfigured.

$EASEConfiguration.TagDataTableSeq Tag data sequence numbers from project DB. Changes when tag
data is reconfigured.

$EASEConfiguration.TotalAlarmGroups Count of configured alarm groups.

$EASEConfiguration.SecuritySeq Security sequence numbers from project DB.

Fixed Fields Reference Operations Viewer

31 HA028882 Issue 5

$EASEConfiguration.AlarmProvSeq Sequence number changes each time data changes that requires an
alarm provider rebuild.

$EASEConfiguration.TagTableAddrSeq Sequence number changes when any tag data that affects the
addressing of the tag is changed.

$EASEConfiguration.DisplayBlockSeq Sequence number changes when Display Blocks configuration is
modified.

$EASEConfiguration.SQLServer The path to the SQL Server for the system.

$EDBUF_<Name>.UpdateCnt Exception data buffer <Name>, count of updates. <Name> can be
EASEALARM for the alarm provider exception data buffer or
LIS_EDBUF for the LINData exception buffer.

$EDBUF_<Name>.UpdateErrCnt Count of update errors into the exception data buffer.

$EDBUF_<Name>.UpdBufSize Size (bytes) of the exception data buffer.

$EDBUF_<Name>.UpdBufLow Water Minimum free space in the exception data buffer since startup.

$FSAlarmProvider.APVersion Version string from alarm provider.

$FSAlarmProvider.Banner, BannerTwo,
BannerThree, BannerFour

Strings containing codes used to generate the alarm banner display.

$FSAlarmProvider.APWatchdog Health counter for the alarm provider. Should change every second.

$FSAlarmProvider.APErrors Count of update errors into the alarm provider.

$FSAlarmProvider.APHealth Percentage of alarm data that is being communicated with. 100 =
healthy.

$FSAlarmProvider.APNewAlarms A counter of total alarms which increases every time there is a new
alarm. Once it reaches 32767 it will return to 1.

$FSAlarmProvider.APActAl A counter of the total number of active alarms.

$FSAlarmProvider.APUnAckAl A counter of the total number of unacknowledged alarms.

$FSAlarmProvider.APAl A counter of the total number of all alarms, active or
unacknowledged.

$FSDataServer.Version Version string from LINData.

$GroupData.AddCnt Count of AddItem calls into the OPC group.

$GroupData.AddErrCnt Count of errors from AddItem calls into the OPC group.

$GroupData.AddErr Last error returned from AddItem in the OPC group.

$GroupData.WrtCnt Count of writes to items in the OPC group.

$GroupData.WrtErrCnt Count of errors on writes to items in the OPC group.

$GroupData.WrtErr Last error returned from WriteItem in the OPC group.

$GroupData.UpdErrCnt Count of update errors on items in the OPC group.

$GroupData.UpdErr Last error returned by an item update in the OPC group.

$GroupData.UpdCnt Count of updates on items in the OPC group.

$GroupData.AddErrFlag A bitmask used with AddErrStr array. Setting to 0 clears all error
strings. Setting individual bits clears the specified entries in the
AddErrStr array.

$GroupData.AddErrStr[0->9] Array of 10 strings (to be addressed separately) containing the last
ten AddItem error strings.

System Fixed Field Usage

Fixed Fields Reference Operations Viewer

32 HA028882 Issue 5

$GroupData.WrtErrFlag A bitmask used with WrtErrStr array. Setting to 0 clears all error
strings. Setting individual bits clears the specified entries in the
WrtErrStr array.

$GroupData.WrtErrStr[0->9] Array of 10 strings (to be addressed separately) containing the last
ten WriteItem error strings.

$GroupData.ResetStats Set to 1 to reset all the error statistics on the group.

$GroupData.ItemsInGroup Count of items currently in the group (including this one!).

$GroupData.ItemsNotResolved Count of items that have been added but not resolved (not
communicating).

$License.LicState Integer indicating state of the license. See table in section ‘LicState
and LicStateString’, below.

$License.LicStateString License state - see table in section ‘LicState and LicStateString’,
below.

$License.ViewBlocks Number of blocks that Operations Viewer client(s) have cached.

$License.ViewBlocksMax Maximum number of blocks that Operations Viewer client(s) can
cache.

$License.ViewState View blocks state: Integer, 0 = Less than max - 5 blocks cached, 1 =
more than max - 5 blocks cached, 2 = max blocks cached.

$License.OPCBlocks Number of blocks that all LINOPC OPC clients have cached.

$License.OPCBlocksMax Maximum number of blocks that all LINOPC OPC clients can cache.

$License.OPCState OPC blocks state: Integer, 0 = Less than max - 5 blocks cached, 1 =
more than max - 5 blocks cached, 2 = max blocks cached.

$LINOPC.OPCUpdCnt Count of updates to all items in LINOPC.

$LINOPC.OPCUpdErr Error code from last failed update.

$LINOPC.OPCUpdErrCnt Count of update errors on all items in LINOPC.

$LINOPC.OPCAddCnt Count of AddItem requests in LINOPC.

$LINOPC.OPCAddErr Error code from last failed AddItem.

$LINOPC.OPCAddErrCnt Count of AddItem errors in LINOPC.

$LINOPC.OPCAddErrFlag A bitmask used with AddErrStr array. Setting to 0 clears all error
strings. Setting individual bits clears the specified entries in the
AddErrStr array.

$LINOPC.OPCAddErrStr[0->9] Array of 10 strings (to be addressed separately) containing the last
then AddItem error strings.

$LINOPC.OPCWrtCnt Count of writes to all items in LINOPC.

$LINOPC.OPCWrtErr Error code from last failed write.

$LINOPC.OPCWrtErrCnt Count of write errors on all items in LINOPC.

$LINOPC.OPCWrtErrFlag A bitmask used with WrtErrStr array. Setting to 0 clears all error
strings. Setting individual bits clears the specified entries in the
WrtErrStr array.

$LINOPC.OPCWrtErrStr[0->9] Array of 10 strings (to be addressed separately) containing the last
ten WriteItem error strings.

$LINOPC.OPCResetStats Set to 1 to reset all the error statistics on the group.

System Fixed Field Usage

Fixed Fields Reference Operations Viewer

33 HA028882 Issue 5

LicState and LicStateString

The other fixed fields all relate to tags in the project database. The type of item to

which fixed fields apply is variable. In the following table the variable parts are

enclosed in angle brackets which define the type of item and syntax required.

$LINOPC.OPCItemsInGroup Count of items currently in LINOPC (including this one).

$LINOPC.OPCItemsNotResolved Count of items that have been added to LINOPC but not resolved (not
communicating).

$LINOPC.OPCClients Count of OPC clients.

$LINOPC.OPCGroups Count of OPC groups.

$LINOPC.LINSRV32Version Version string for linsrv32.dll.

$LINOPC.LINOPCVersion Version string for LINOPC.exe.

$LINOPC.OPCWatchdog Health counter for the alarm provider. Should change every second (if
the data rate is sufficient).

$LINOPC.Message When a string is written to this (usually a special format) it will be
logged to the alarm history by the alarm provider.

$PrinterN.Available Used with Network Printer Status application. Is Printer N
available/communicating? 1 = Yes, 0 = No.

$PrinterN.OK Is PrinterN OK? 1 = Yes, 0 = No.

$PrinterN.Warning Is there a possible problem with PrinterN? 1 = Yes, 0 = No.

$PrinterN.Error Is there an error on PrinterN? 1 = Yes, 0 = No.

$PrinterN.Status Status text of PrinterN.

$PrinterN.Name The name of PrinterN.

$TagDLL.TagDLLVersion Version string for tag dll.

System Fixed Field Usage

LicState
Value LicStateStr Description

0 Not Initialised LicenseInit with package has not been called
(LINOPC)

1 OK License initialised - valid

2 Temporary License initialised - temporary

3 ACK Required License initialised - temporary - Acknowledge
required

4 Expired - No Acknowledgement License initialised - temporary - expired no
acknowledgement

5 Temporary Date Expired License initialised - temporary - date expired

6 Invalid Invalid license found

Fixed Fields Reference Operations Viewer

34 HA028882 Issue 5

Fixed Field Usage

<Item>.AccessName The access name to use to read an item where <Item> is a tag for
a field or sub-field.

<Item>.LINFieldType Integer representing the LIN field type of an item where <Item> is a
tag for a field or sub-field.

<Item>.IsWritable Is an item writeable? 1 = Yes, 0 = No. Where <Item> is a tag for a
field or sub-field.

<BlockTag>.<Alarm>.AlmIn Is the tag's alarm in alarm? 1 = Yes, 0 = No. Alarm can be alarm
name or Alarms[N] where N is alarm number 1 to maximum alarms
or 0 (for current alarm).

<BlockTag>.<Alarm>.UnAck Is the tag's alarm unacknowledged? 1 = Yes, 0 = No.

<BlockTag>.<Alarm>.AlPriority Priority (0 to 15) of the tag's alarm.

<BlockTag>.<Alarm>.FieldName The displayed name for the tag's alarm.

<BlockTag>.CurrAlNo The current alarm number in a LIN block.

<BlockTag>.CurrAl The current alarm byte in a LIN block.

<BlockTag>.HistAlNo The historic alarm number in a LIN block.

<BlockTag>.HistAl The historic alarm byte in a LIN block.

<BlockTag>.BlockName The name of the block (not necessarily the same as the tag).

<BlockTag>.Template The block's template type

<BlockTag>.CommAl The communication alarm byte in a LIN block.

<BlockTag>.CurrentRate The current poll rate (in milliseconds) for the block.

<BlockTag>.NodeName The name of the LIN node that the block is in.

<BlockTag>.NetworkName The name of the network that the block's node is on.

<BlockTag>.MasterDBF The source DBF (or layer) that contains the block.

<BlockTag>.DefaultDBF The output DBF (the one to be run in the instrument) that contains
the block.

<BlockTag>.TaskNo The task number for the block.

<BlockTag>.<Field>.Enums or
<FieldTag>.Enums

The field enumerations in the form
<Count>,<Enum1>,<Enum2>,...

<BlockTag>.<Field>.FieldName
or
<BlockTag>.<Field>.<SubField>.
FieldName or
<FieldTag>.<FieldName>

The displayed name for a field may be different to the field name.

<BlockTag>.HiRange or
<BlockTag>.<Field>.HiRange or
<FieldTag>.HiRange

The high range of the item may be from the LIN block, a tag profile
or the tag range.

<BlockTag>.LoRange or
<BlockTag>.<Field>.LoRange or
<FieldTag>.LoRange

The low range of the item may be from the LIN block, a tag profile
or the tag range.

<BlockTag>.<Field>.% or
<FieldTag>.%

The value of the field expressed as a percentage of the range. The
range of the item may be from the LIN block, a tag profile or the tag
range.

Fixed Fields Reference Operations Viewer

35 HA028882 Issue 5

<Tag>.<EventPriority> The priority associated with any non-alarm events for the alarm
history.

<Tag>.<AlMask> Are alarms masked for this tag? 1 = Yes, 0 = No.

<Tag>.TagName Allows the tagname to be edited.

<Tag>.BriefDesc The brief description for the tag. Appears at the bottom of
faceplates.

<Tag>.FullDesc The full description for the tag. Used in logged messages.

<Tag>.Units The units for the tag. Appears on faceplates.

<Tag>.UserStr1,UserStr2,
UserStr3

User-definable strings associated with a tag.

<Tag>.TagDataRate The normal rate for reading displayed data (milliseconds).

<Tag>.AlarmRate The rate for reading alarm data (milliseconds).

<Tag>.HomeDisp The name of the display block that defines the mimic designated
as the home display for a tag (can be displayed from the point
page).

<Tag>.IconDisp The name of the display block which defines the mimic designated
as the icon display for a tag (not currently used, i.e. spare).

<Tag>.FasDisp The name of the faceplate display, used to override the default
from the template name.

<Tag>.PtDisp The name of the point display. Point displays can be defined in the
tag profile configurator. Only pre-defined point types may be
entered here.

<Tag>.PhyAddr The fully qualified physical address (FQA) for the tagged item
(block or field).

<Tag>.SecurityArea The security area the tag is assigned to. Must already exist in the
list of security areas.

<Tag>.HighDesc The high descriptor for digital tags. Appears on faceplates and
may be used as enumeration of the primary variable TRUE state.

<Tag>.LowDesc The high descriptor for digital tags. Appears on faceplates and
may be used as enumeration of the primary variable FALSE state.

<Tag>.LoopNumber The loop number for the tag.

<Tag>.PandID The P & I diagram reference for the tag.

<Tag>.Deadband The deadband for the tag.

<Tag>.Trended Is the tag InTouch trended? 1 = Yes, 0 = No.

<Tag>.InSQL Is the tag InSQL trended? 1 = Yes, 0 = No.

<Tag>.LinkTrendRanges 1 = Yes, 0 = No.

<Tag>.TagType Integer representing the ‘component type’. 9 = block, 10 = field, 11
= subfield.

<Tag>.PlantUnit The name of the plant unit the tag is assigned to.

<Tag>.PlantUnitName The name of the plant unit the tag is assigned to. Same as
‘PlantUnit’.

<Tag>.PlantUnitDesc The description of the plant unit the tag is assigned to.

Fixed Field Usage

Fixed Fields Reference Operations Viewer

36 HA028882 Issue 5

<Tag>.ProcessCell The name of the process cell the tag is assigned to.

<Tag>.ProcessCellName The name of the process cell the tag is assigned to. Same as
‘ProcessCell’

<Tag>.ProcessCellDesc The description of the process cell the tag is assigned to.

<Tag>.AlarmGroups A comma separated list of alarm groups the tag is assigned to.

<Tag>.GenericType The generic type of the tag. One of AIN, AnalogField, ANY, AOUT,
CM, DigitalField, DIN, DOUT, GeneralField.

<Tag>.MachTags A comma separated list of machine tags (from the LIN database)
associated with the same item.

<Tag>.TagAddrSeq A sequence number that changes every time the tag physical
address is affected.

<Tag>.TagDataSeq A sequence number that changes every time tag related data is
changed.

<FieldTag>.BlockTag The tag for the block which contains this field or sub-field.

<FieldTag>.FTagFld The field name that is tagged.

<FieldTag>.FTagSubFld The sub-field name that is tagged, if any.

<FieldTag>.FTagWrite Is the tagged field writeable? 1 = Yes, 0 = No.

<FieldTag>.FTagType The default rendered type for this field or sub-field. 1 = boolean, 7
= integer, 8 = float, 10 = string.

Fixed Field Usage

Rear Cover (Master)

Scan for local contents

Eurotherm Ltd
Faraday Close
Durrington
Worthing
West Sussex
BN13 3PL
Phone: +44 (0) 1903 268500
www.eurotherm.co.uk

Schneider Electric, Life Is On, Eurotherm, EurothermSuite, Wonderware, InTouch, eCAT, EFit, EPack, EPower,Eycon,
Eyris, Chessell, Mini8, nanodac, optivis, piccolo, and versadac are trademarks of Schneider Electric SE, its subsidiaries
and affiliated companies. All other trademarks are the property of their respective owners.

HA028882 Issue 5 (CN35935)

© 2017 Schneider Electric. All Rights Reserved.

http://www.eurotherm.co.uk

	Front Cover
	Table of Contents
	Key Shell Application Features
	User Interface Framework
	Standard Displays
	Graphical Wizards
	Server Redundancy
	Security
	Language Support

	The Alarm Banner
	Alarm Group Boxes
	Alarm Summary
	Server Alarms and Redundancy
	Computer Alarm Views
	Using InTouch Alarms

	The Button Bar
	Display Navigation
	List Boxes
	Tool Tips

	Security
	Application Security Features
	Recipe Security
	How We Download Recipes
	What if I need to upload my recipe?

	Tag Security
	Station Lockdown

	Language Support
	Graphical Wizards
	Control Modules Library
	InHouse Wizards

	System Variables
	User Variables
	QuickFunction Reference
	Tag Dictionary Reference
	Customising Point Pages and Faceplates
	Fixed Fields Reference
	LicState and LicStateString

	Rear Cover

