Chapter 20

ALARMS

Edition 3

Overview

CUR-ALMS ...t 20-1
Functional Descriptioncccceeeevieiiiieeiviieeiieeeennn, 20-2
Function Block Aftributescoooovviiiiieniiiiiiiiiiennnn, 20-2
Parameter Descriptionsc.cevevveeiiiiiiiiineciieceinnns 20-3
Parameter Attributesc.c.civviiiiiiiiiinnniiiiien, 20-17

HISTORY ..ot 20-19
Functional Descriptioncccccvevvvvieieiiieiviieeinneene. 20-19
Functional Block Attributescccuvveeiiiiiiiiiinnne. 20-20
Parameter Descriptionscccceveviiiviiiieiieiineenneenn. 20-20
Parameter Attributesceeeeiiiiiiiiiiieee e, 20-26

SENSOR ... e e e 20-27
Functional Descriptionccoeeeiiiiiiiiiieieieciicenen, 20-27
Function Block Aftributesccccoevvviiiiiiiiiiiiiinnnn. 20-28
Parameter Descriptions.......cccocoeveviviiiiiiiniinecnnennn. 20-28
Parameter Aftributesceeeeiiiiiiiiiiiiieeeeie e, 20-31

SENSOR Th ... e 20-32

DETECTOR... .ottt 20-33
Functional Descriptionc.ccceeevviiieveieeiviieeiieeennn. 20-33
Function Block Attributescoovviieiiiiiiiiiiinnnnn. 20-34
Parameter Descriptionscccevvvivieiiieneeeneeenennnnns 20-34
Parameter Attributesceeeiiiiiiiiiiinnniiciine, 20-38

PC 3000 Function Blocks Cont. 20-i

Overview

A suite of alarm function blocks has been added to the PC3000 Function Block
library. These provide a means of logging exception conditions and events. The
blocks provide for multiple alarm/event sources and record time alarms occurred,
value at which they occurred together with an optional text message for each entry.
The PC3000 Real Time Clock is used to time stamp each alarm entry. The alarm
system is based around two principal types of blocks.

Alarm Sensors - these are blocks with a Boolean input which register the alarm
state. The actual conditions which generated the alarm is defined external to the
block by means of soft wiring in the user programme. This permits maximum
flexibility in defining the source of the alarm or event. A simple example might be
to test for Loop_L.PV> Max Temp. When the alarm state changes, the state is
passed to an associated alarm buffer block.

Alarm Buffers - these are blocks which store or log information associated with
each alarm. There are two types provided:

Cur_Alms Logs data associated with current or 'live' alarms. This block

provides information about the STATE of an alarm.

History Logs historical i.e. cleared alarms for batch traceability or process

start up 'post-mortem’.

There are four possible states for an alarm entry in the current alarm buffer:

Cont. 20-ii PC 3000 Function Blocks

Alarm State

Description

Active, Not Acknowledged

The alarm sensor has detected an alarm condition.
The supervisor/operator interface has taken no
action

Active, Acknowledged

The alarm sensor has detected an alarm condition.
The supervisor/operator interface has
tacknowledged the alarm but the condition still
exists.

Not Active, Not
Acknowledged

The alarm sensor has detected an alarm condition.
The supervisor/operator interface did not
tacknowledge the alarm but the alarm condition
no longer exists. (fleeting' or missed alarm)

Not Active, Acknowledged

The alarm sensor has detected an alarm condition.
The supervisor/operator interface has acknowledge
the alarm; the alarm condition has been CLEARED.
In this state the alarm is transferred from the live or
current alarm buffer and becomes a historic alarm
in the history buffer.

Table 20-1 Alarm Entry States

The sensor blocks provide 23 input parameters which may be used to identify the
alarm/event source. These parameters are described as Type and Area. The
parameters may be used either:

1. Where alarms must be grouped i.e. all barrel zones on an extruder, the
Area parameter may be used to classify any alarm from this part of the
machine. If the different alarms can occur e.g. an over temperature alarm
and a setpoint deviation alarm then further identification is possible by
using the Type parameter. The over temperature alarm could be described
as Type 1 and the deviation alarm as Type 2.

2. Where it is not required to group alarms, the combination of Type and
Area are used to create a unique alarm number for each alarm.

Note: No two alarms can have the same Type and Area as it will
not be possible to establish where the alarm originated.

In addition to the sensor block, a detector block provides standard alarm sensing
strategies for absolute, deviation alarms and rate of change. The block monitors
an input variable e.g. PV and compares it with setpoint and limit inputs. The
limits detected are high alarm, low alarm, deviation high alarm, deviation low
alarm, deviation band alarm and rate of change alarm.

PC 3000 Function Blocks

Cont. 20-iii

In Figure 20-1 the analogue input (either a monitor or control input) has been
wired to a Detector function block. This compares the analogue input value with
the alarm threshold of 650 and if exceeded will result in the Hi_Alarm output
being set. This is sensed by the alarm sensor wired to the detector and time
stamped. The sensor has a configuration parameter Bufld which associates the
sensor with the current alarm buffer that shares the same ID. The Cur_Alms block
also includes a configuration input, Logld, which is used to associate the History
buffer into which alarms will be entered when cleared.

Detector Sensor Cur_Alm
Analog In
Hi Alm State 1 — Bufid
PV PV 2 — Logld
\
SP 1 — Bufld
Sensor History
——————
| ST EXPRESSION | State 2 — Logld
1 — Bufld
Sensor Cur_Alm
 State 2 — Bufld
2— Logld
2 — Bufld

Figure 20-1 Overview of the alarm system

The diagram also shows how an alarm sensor block may be used in conjunction
with a Structured Text wiring statement to implement non-standard alarm
strategies. An example might be:

Sensor.State:- tcl.PV >= 250 and BatchNo.vVal = 10 AND
ProcTime.Elapsed-Time > T#5h25m;
Finally, the diagram shows a third sensor with a different Bufld. This allows

alarms, perhaps from a different process to be associated with a separate alarm
buffer. In this case the buffer is identified with a Bufld of 2.

Cont. 20-iv PC 3000 Function Blocks

Cur_Alms

CUR_ALMS FUNCTION BLOCK

B e SO S RS DD

DINT

DINT

STRING

DINT

STRING

BOOL

BOOL

BOOL

BOOL

BufId
LogId
CommsAddr
Index

Pack_Addr

S e s

Cur_ Alms

Status

T

Error_No

LiveAlarms

NumAlarms

MxLevel

— BOOL

— DINT

— DINT

— DINT

— DINT

b BOOL

—— BOOL

Act_Index
Type

Area

—— BOOL

— BOOL

b DINT

— DINT

— DINT

Level

Count

AlmState

Occurred_t

peve
]

Occurred_p

T

Acked_t

Inactvtd_t
Inactvtd_p

Alm_Str

Figure 20-2 Cur_Alms Function Block

b DINT

p— DINT

— ENUM

— DATE AND TIME

— REAL

l— DATE AND TIME

| DATE AND TIME

—— REAL

— STRING

PC 3000 Function Blocks

20-1

Cur-Alms

Functional Description

The Cur_Alms function block contains an array of currently uncleared or live

alarms and allows access to the elements of this array by means of an index
input. It is intended for use with alarm sensor function blocks to provide a system
for recording alarms and user defined events within the PC3000 controller.

The block also contains two internal communications slave variables. One
provides a Eurotherm Bisync interface (when associated with a slave comms
driver) and is used to access the complete data held in the function block. This
would be used with supervisory computers such as ESP. The other slave variable
provides a MODBUS/JBUS interface and allows access to a packed string
containing alarm type and state information only. The latter is intended to
provide simple access to key data and is intended primarily for use with the 9" and
12" terminals.

Alarms can be acknowledged via either of these tow slave parameters, or via the
parameters of the function block itself. This allows supervisory systems, Xycom
panels, and the Euro_Panel to be used as an interface to the alarm handling system.

The current alarm buffer is 'associated’ with a number of alarm sensors (function

blocks which provide the data about the alarm condition) by means of a buffer
identifier. This allows the use of more than one live alarm buffer in the PC3000
Alarms from different parts of the machine or process could be associated with
their own current alarm buffer.

The current alarm buffer also provides a mechanism for interfacing to History,
historical alarm buffer. This buffer stores 'cleared' alarms. A History buffer is
associated with a current alarm buffer by means of a log identifier.

Function Block Attributes

TYPE: ceereeeeeeeerer e 6670

Class:..ccceeereeeieeeeeiceeee e ALARMS

Default Task:ccccocvvueeeeeee.. Task 1

Short List: .ooeueevieeeeiieeenee. BuflD, LogID, NumAlarms, MxLevel

Memory Requirements: 6888 Bytes

20-2

PC 3000 Function Blocks

Cur_Alms

Parameter Descriptions

The Cur-Alms function block provides the following parameters:

Bufld (BID)

This is the alarm buffers identifier (ID). The ID must be unique. It is the
reference by which alarm sensors are connected to or associated with the
Cur_Alms function block.

Logld (LID)

This is the parameter which is used to associate a History function block with the
current alarm buffer. Cleared alarms are passed to the History block with the log
identifier (LogID) which matches this value.

CommsAddr (ADD)

This is the comms address for the multi-element or composite salve parameter.

This address provides access via the Eurotherm Bisync protocol to the
information contained in the alarm array. The date may be accessed as a single
multi-element parameter, or as a number of separate elements. Reading the data
at the slave address will return the multi-element parameter. Access to
subsequent addresses will return only one element. it is not possible to specify
data format for the individual elements and the default formats is assumed.

The data contained within the slave parameter takes the following form:

PC 3000 Function Blocks 20-3

Cur-Alms

Offset Parameter Type
0 Composite parameter
1 Index Integer
2 Type Integer
3 Area Integer
4 State Integer
5 Level Integer
6 Count Integer
7 Occured Time Integer
8 Occured Position Real
9 Acked Time Integer
10 Inactivated Time Integer
11 Inactivated Position Real

The offset refers to the offset from the base address. As an example, if the slave
address is set up with an address of 'EBA90' and the associated Bisync slave block

has a GID setting of '0' the following address would apply:

Offset Parameter Type
00 A90 Composite parameter
00 A91 Index Integer
00 A92 Type Integer
00 A93 Area Integer
00 A94 State Integer
00 A95 Level Integer
00 A96 Count Integer
00 A97 Occured Time Integer
00 A98 Occured Position Real
00A99 Acked Time Integer
00 A9 Inactivated Time Integer
00A9 Inactivated Position Real

For further details on alarm addressing see the section covering alarm

communications.

20-4

PC 3000 Function Blocks

Cur_Alms

Index (1)

This parameter provides a means of accessing data stored in the alarm array.The
function block outputs will display the alarm entry at position Index if it exists. As
an example, if the tenth alarm was to be selected, the index would be set to 9 and
the function block outputs would indicate data relating to this alarm.

Pack Addr (PA)

This is the comms address for the packed slave parameter. This parameter is
provided to emulate several applications which utilise the 9" and 12" Xycom
terminals for alarm display and acknowledgements. If used with these terminals
the address would be set for JBus use, i.e. 'JB****',

For further details on alarm addressing see the section covering alarm
communications.

Ack (ACK)

This is a boolean input allowing the currently selected alarm to be acknowledged.
It is set by user and automatically cleared by block.

New_ Alm (NAL)

This is a boolean status parameter which indicates that a new alarm has occurred.
It is set by the block and should be cleared by the user. This parameter could be
used to force an alarm screen to be displayed on the supervisory system or panel

when a new alarm is received.

Status (ST)

This indicates the function block status. In normal operation the parameter will
indicate the Go state. However, in the event of an error being detected the
parameter will revert to the NOGO state and the reason for the error will be
indicated by the Error_No parameter.

Error_No (ERR)

This indicates the function block error number. If an error is detected when the
PC3000 program runs, the error will be indicated as shown in the table below and
the block status will become NOGO.

PC 3000 Function Blocks 20-5

Cur-Alms

Error Error Cause and Action
Number
105 Too many buffers There are more than 20m buffers (Cur_Alarms AND

History function blocks). Any buffer indicating this
error will not be operational and the number of
buffers will be reduced.

106 Buffer ID out of range The Log ID is less than O or greater than 9. Change
the Buffer ID and sensor ID's associated with this
buffer.

107 Duplicate ID A buffer already exists with this ID. Change the buffer

ID and sensor ID's associated with this buffer.

Table 20-2 Errors may be Detected and Indicated

Live Alarms (LA)

This indicates the total number of unacknowledged alarms in the alarm buffer

NumAlarms (NA)

This parameter indicates the total number of alarms in the buffer.

MxLevel (MXL)
This indicates the highest level alarm in the buffer i.e. the highest priority alarm.

Act_Index (Al)

This will be equal to Index if the parameter Index lies in the following range:

O<Index<=NumlLogged

It will be equal to zero for values of Index outside this range.

Type (TYP)
This indicates the alarm type at the position in the log specified by Act_Index.

Area (A)

This parameter refers to the area which the alarm entry currently specified by
Act_Index came from

20-6 PC 3000 Function Blocks

Cur_Alms

Level (L)

The level of alarm at the position specified by Act_Index. Level is used to indicate
the alarm priority. This allows different alarms to be prioritised and warning
messages and corrective action to be controlled accordingly. The highest level
alarm in the buffer is indicated by the parameter MXLevel.

Count (C)

The number of times the alarm at the position specified by Act_Index has become
active. An alarm may be registered a number of times without the alarm being
acknowledged (particularly during commissioning). Rather than creating a
separate entry in the current alarm buffer for each occurrence, the first time the
alarm became active is logged and the number of times it has subsequently
changed state from inactive to active is counted.

Alarm
Condition
[[
Acknowledge ! : : : :			
I			
I I !	—		
	! I 1		
Count 1 2 3 4 |
I
Occured t Acl|<ed_+ Inactvd_t
AlmState(ALS)
This parameter indicates the state of the alarm at the position specified by
Act_Index.

PC 3000 Function Blocks 20-7

Cur-Alms

Value State Meaning

0 Empty No alarm at this position. This is the state of
an alarm that was acknowledged and is no
longer active i.e. a dead alarm

1 NactNak Not active, not acknowledged. An alarm
which disappeared before it was
acknowledged

2 ActAck An alarm which is currently active but has
been acknowledged

3 ActNak An alarm which is currently active and has not
yet been acknowledged

Table 20-3 States that may be displayed

Occurred t (OCT)

Time that alarm currently specified by Act_Index became active.

Occured p (OCP_

A value that indicates the position e.g. length at which the alarm specified
byAct_Index became active.

Acked {AKT)

The time that alarm (Act_Index) was inactivated.

Inactvd _p (IAP)

A value that indicates the position e.g. length at which the alarm specified by
Act_Index became inactive. The following diagram summarises the function of
these parameters.

20-8 PC 3000 Function Blocks

Cur_Alms

Signal

(Position, length etc.)

Alarm
Condition
|
| |
| |
| |
| |
Acknowledge | |
|
I | '
STATE | AciNak | AcAck | Clearedto ActNak NactNak
| | | History Block
. |
PARAMETERS Occured_f Acked_f |ncdvd_’r
Occured p Inactvd_p

Alm_Str (STR)

The value of the alarm string for alarm specified by Act_Index. The alarm string
will typically be used to store a text message associated with that alarm.

Ack_All (AA)

A boolean input which can be used Acknowledge all alarms in this buffer.
Primarily intended for use during commissioning when multiple alarms may be
active.

Clr_Nact (CCN)

A boolean input which will acknowledge (and therefore clear) all inactive alarms
in this buffer.

General Usage

Examining alarms

When there are a number of alarms in the alarm buffer, they can be examined one
at a time by setting the Index input. If this is set to an existent alarm number, all

PC 3000 Function Blocks 20-9

Cur-Alms

the relevant parameters will be displayed on the outputs of the blocks.

PRO

VAR

Note that acknowledged time, inactivated position and inactivated
time will be zero unless the appropriate action (acknowledgement
or alarm off) have taken place.

Note that alarm one is always the most recent alarm, unless the
alarm handler is full (128 Alarms). If the alarm handler is full, a
new alarm will not be logged unless its level is higher than the
lowest level in the buffer.

For example, if alarm 20 in the buffer has level 3, all other alarms have level 4, and
the alarm buffer is full. If another level 3 alarm occurs, it will not be logged. If a
level 4 alarm occurs, alarm 20 will be cleared, and the new alarm added at position
1.

Acknowledging alarms

To acknowledge the currently displayed alarm, the Ack input is set. This input is
cleared own by the block.

All alarms in the buffer can be acknowledged by setting the Ack_All parameter.
This is cleared down by the block.

To remove all the inactive alarms from the buffer, set the Clr-Nact input, which is
cleared by the block.

Detecting new alarms

A new alarm can be detected by monitoring the New_Alm input/output. This will
be set by the block and clear by the user programme.

ST Fragment showing panel access to alarm block

GRAMME PANEL1l (*16 Nov-1992-14:43:41%)

(*SYSTEM)

PocsSTATE: PcsSTATE ;

Tsk_10ms:Task (Interval :=T#10ms
Priority :=0);

Tsk100ms:Task (Priority :=1):

Messages:Messages

RT-Clock:RT_Clocks;

(*COMMS*)
panel :Buro_Panel (Port :="0OA");

20-10

PC 3000 Function Blocks

Cur_Alms

(*USER_VARY)
level :Boolean :
alm :Integer

(*SLAVE_VARS*'

booll :Slave_Bool (Address :='Epbooll'):
bool2 :Slave_Bool (Address ='EPbool2!') :
intl :Slave_Int (Address =E'Pint"');
int?2 :Slave_Int (Address ='EPint2"');
timel :Slave_Time (Address ='EPtimel"');
time2 :Slave_Time (Address :="EPtime2"') ;
strl :Slave_Str (Address ='EPstrl');
str2 :Slave_Str (Address ='EPstr2');
(*STEPS *)
MAIN :Macro H
PANEL :Macro ;
Init :Step ;
Display :Step ;
End :Step ;
(*ALARMS*)
buff :Cur_Alms (BufId : 1,
LogId =1,
CommsAddr :='EBr00);
high :Sensorl6 (Type:=1,
AreaStart :=1,
BufId =1,
Alm_Str :+'Process Value Over Range Loop');
low :Sensorl6 (Type :=2,
AreaStart :=1,
BufId :=1,
Alm_Str :="Process Value Under Range Loop');

(*Internal Variables*)

(*SYSTEM*)

(*COMMS*)

(*USER_VAR*)

(*SLAVE_VARS*)

PC 3000 Function Blocks 20-11

Cur-Alms

END-VAR

reall_vValue
real2_Value
real3_Value
intl_value
timel Value
time2_value
strl Value

str2_Value

(*STEPS*)
(*LOADS*)

(*ALARMS*)
buff Index

:REAL;
:REAL;
:REAL;
:DINT;
:TIME;
:TIME;
:STRING;
:STRING;

(*function block instantiations¥*)

INITIAL_STEP EXECUTE_100)

buff
str2
strl
bool2
booll
alm

low

high

(Index
(Value

Value

’

)
)
)

AlmState2
AlmState3
AlmState4d
AlmStatel
AlmState2

(
(
(
(
(AlmStatel
(
(
(
(

AlmState3
AlmState4

panel ():

RT _Clock
Messages
Tsk100ms
PcsSTATE
END_STEP

INITIAL STEP EXECUTE_10

level ()

—~ o~~~
—_— o~ o~ o~
. . . .

Tsk_10ms () :

END_STEP

:DINT;

:=buff_ Index);

:=str2_Value);

:=strl_Value) ;

:=1loadl.

Main_Pv<-50,

:=load2Main_PV<-50,

:=load3
:=load4
:=loadl
:=load2
:=load3
:=load4d

.Main_PV<-50,
.Main_PV<-50,
.Main_PV>30,
.Main_PV>30,
.Main_PV>30,
.Main_PV>a50)

20-12

PC 3000 Function Blocks

Cur_Alms

(*MACRO : ALARMS *)

STEP ALARMS:

S Init

T1
c Display
e End

*)

(*SINGLE SHOT¥*)
INITIAL STEP

’

(*Set up the display and parse the page¥*)

panel_Key_ Pressed

buff-Index

:=22 (*No_Key*) :
=1

(Display the contents of str2 on the top line¥*)

(*with enumerated output of alarm states¥*)

panel _Format_A

(*Place "Acknowledge'

panel_Format_B

panel_Format_C

panel_Change_Page

END-STEP

TRANSITION
FROM INIT
TO DISPLAY

:="'str2:32C,intl (_,NactNak, Act
Ack,ActNack) ';

above Fa, "Exit" above F3%*)

:="@0:1, "Acknowledge", @30, "Exit""';

PR |
c—

:=2 (Nxt_pge*) ;

:=1; (*NULL transition - default TRUE%*)

END TRANSITION
(*CONTINUQUS*)
STEP Display

(*Clockwise for next alarm*)

IF panel.Key_ Pressed=10(*Clkwise*) THEN

buff_ Index

panel_Keyt_Pressed

END_TF;

:=buff.Index + 1;
:=22 (*No_Key¥*) ;

PC 3000 Function Blocks

20-13

Cur-Alms

(*Anticlockwise for previous alarm*)

If panel,Key-Pressed= 11 (*AClkwse*) THEN
buff-Index :=buff.Index - 1;
END_TF:

(*F1 for acknowledge*)

IF panel.Key_ Pressed = 14 (*Fl*) THEN

buff Ack :=1 (*0On¥*);
panel_Key_ Pressed :=22 (*No_Key*) ;
END_TIF;

(*Display "No Alarms" if there are no alarms!*)

IF buff.NumAlarms - = 0 THEN
str2_Value :='No Alarms';
intl_value :=0;

ELSE

(*Limit Index to between 1 and buff.NumAlarms*)
IF buff.Index = 0 THEN
buff Index :=1;

ELSIF buff.Index>buff.NumAlarms;

buff_ Index :=buff.NumAlarms;

END_TF;

(*Display alarm string (set on sensor) and current state*)

str2_value :=CONCAT (IN1l:= BUFF.ALM_STR
,IN22:= DINT TO_STRING(IN:=buff.Area)):
intl-vValue :=buff.State;
END-TIF;

END-STEP

TRANSITION
FROM Display
TO End

panel .Key-Pressed = 16 (F3%*);
END_TRANSITION

(*SINGLE SHOT¥*)

STEP End:

END_STEP

END_STEP (*ALARMS¥*)

TRANSITION

FROM ALARMS (*MACRO¥*)
TO TOP

20-14 PC 3000 Function Blocks

Cur_Alms

:=1; (*NULL transition - default TRUE*)
END_TRANSITION

END_STEP (*PANEL¥)
END_STEP (*MAIN*)
END_ PROGRAM

Alarm Communications

The following provides further details on access to the contents of the current
alarm buffer via the communications interfaces.

Eurotherm Bisync interface

The data is accessed by means of the slave parameter with the address set by
'CommsAdd'. The fields within the composite parameter described earlier are in
the same order as the entries listed in the tables.

As an example, to read entry 3 in the alarm list, the 'Index' is set to 3:
EOT0000STXA9IORS>3ETX?
The composite parameter may then be read back:

EOTO0000A90ENQ

The reply is:
STXA9YORS>3us>typeus>areaus.stateus>level

us>countus>otimeus@oproduced

us>atimeus>itimeus?@iproduced
In order to acknowledge alarm TYPE 1, AREA 4:

EOTO000STXAIORS US>1us>4ETX?

PC 3000 Function Blocks 20-15

Cur-Alms

Packed Alarm Access (JBus/MODBUS or Eurotherm Bisync)

The packed alarm string appears as a consecutive set of registers under JBus, or as
a string under Eurotherm Bisync. Each alarm entry comprises four bytes so that
32 alarms may be read using 128 byte access.

Each entry takes the form:

Active (255 for active, O for inactive)

Type
Acknowledge (128 for not acknowledged, O for acknowledged)
Area

The alarm type is used as an index into an array of strings. For instance, type 1
may be an over temperature alarm, type a low alarm, type 3 deviation etc. the
area is then appended to this string to form the overall alarm message, e.g. type 2
area 3 could be read as 'low alarm zone 3.

Alarms are acknowledged by writing to the first two bytes of the string or if
JBus/MODBUS communications are used, the first register. The first byte is the
type, the second is the area.

20-16

PC 3000 Function Blocks

Cur_Alms

Parameter Atiributes

Name Type Cold Start | Read | Write Type Specific
fAccess |Access Information
Bufld DINT 1 Oper | Oper | High Limit 255
Low Limit 1
Logld DINT 1 Oper | Oper | High Limit 255
Low Limit 1
CommsAddr STRING " Oper | Oper | Max 13 2
Characters
Index DINT 0 Oper | Oper | High Limit 255
Low Limit 1
Ack BOOL Off (0) Oper | Oper | Senses Off (0)
On (1)
Pack Addr STRING " Oper | Oper | Max 13
Characters
New_ Alm BOOL No (0) Oper | Oper | Senses No (0)
New_Alm (1)
Ack_All BOOL Off (0) Oper | Oper | Senses Off (0)
Ack_AlI(T)
Clr_Nact BOOL Off (0) Oper | Oper | Senses Off (0)
Clr_Nact (1)
Status BOOL NOGO (0) | Oper | Oper | Senses NoGo (0)
Go(1)
Error No DINT 0 Oper | Oper | High Limit 255
Low Limit 0
LiveAlarms DINT 0 Oper | Oper | High Limit 255
Low Limit 0
NumAlarms DINT 0 Oper | Oper | High Limit 255
Low Limit 0
MxLevel DINT 0 Oper | Oper | High Limit 255
Low Limit 0
Actindex DINT 0 Oper | Oper | High Limit 255
Low Limit 0
Type DINT 0 Oper | Oper | High Limit 255
Low Limit 0

Table 20-4 Cur_Alms Parameter Attributes

PC 3000 Function Blocks

20-17

Cur-Alms

Name Type Cold Start | Read | Write Type Specific
{Access |Access Information
Area DINT 0 Oper | Oper High Limit 255
Low Limit 0
Level DINT 0 Oper | Oper High Limit 255
Low Limit 0
Couint DINT 0 Oper | Oper High Limit 255
Low Limit 0
AlmState ENUM Empty (0) | Oper | Oper Senses Empty (O)
NactNak (1)
ActAck (2)
ActNak (3)
Occurred t | DATE_AND TIME Oper | Oper High Limit On (1)
Low Limit
Occurred p | REAL 0 Oper | Oper High Limit On (1)
Low Limit
Acked t DATE_AND_TIME Oper | Oper High Limit On (1)
Low Limit
Inactvid_t DATE_AND_TIME Oper | Oper High Limit On (1)
Low Limit
Inactvid_t DATE_AND_TIME Oper | Oper High Limit
Low Limit
Alm_Str STRING 0 Oper | Oper Max length 255 Characters
Table 20-4 Cur_Alms Parameter Attributes (continued)

20-18

PC 3000 Function Blocks

History

STRING — CommsAddr
DINT — LogId
DINT — Index
BOOL e ClrLog ———___

Figure 20-3 History Function Block Diagram

.

Status

Error_No

NumAlarms

Act Index
Type
Area

Level

Count

Occurred_t
Occurred_p
Acked_t
Inactvtd_t

Inactvtd_p

Alm_Str

p— BOOL

— DINT

— DINT

L BOOL

e DINT

— DINT

— DINT

b DINT

— DINT

— DATE_AND TIME

— REAL

b DATE AND TIME

b DATE AND TIME

— REAL

Functional Description

— STRING

The History function block contains an array of the last 128 cleared alarms, and
allows access to the elements of this array by means of an index input. It is
intended for use with the Cur_Alms function blocks to provide a system for
recording historical alarms and user defined events within the PC3000 controller.

The block also contains on internal communications slave variable. This provides
a Eurotherm Bisync interface and allows access to a composite or multi-element

parameter containing all alarm information. Access via MODBUS/JBUS is NOT
supported on this block (c.f. the Current Alarm buffer).

PC 3000 Function Blocks

20-19

History

The historical alarm buffer is associated with one or more Cur_Alms function
blocks (function blocks which store data associated with live or current alarm
conditions) by means of a log identifier. This allows the use of more than one
history alarm buffer in the PC3000. It also allows multiple current alarm buffers
to store historical alarms in the same historical log. In this case all current alarm
buffers would be set with the same log identifier.

Function Block Attributes

TYPE: coieeeeeeieeeee e, 6671

Class: ...cooevererereeireeeeeeenns ALARMS

Default Task:ccccoeeveennnee. Task 1

Short List:cccceevveevneeennnne LogID, Index, NumLogged, Status

Memory Requirements: 5348 Bytes

Parameter Descriptions

LogID (LID)

This is the identifier (ID) for the alarm log. It is used to connect or associate a
number of alarm handlers to an alarm log. Multiple alarm handlers can log their
alarms in a single alarm log by having the same LogID. The LogID value must
lie in the range O to 9.

Index (l)

This is an index into the array of logged alarms. It may take any value in the range
0 to 127. However, the alarm log will only contain valid historic alarm data in the
range 0 to NumLogged and the value of the parameter Index should be restricted
to this range.

CommsAddr (ADD)

This is the comms address for a multi-element or composite slave parameter.

This address provides access via the Eurotherm Bisync protocol to the information
contained in the alarm array. The data may be accessed as a single multi-element
parameter, or as a number of separate elements. Reading the data as the slave
address will return the multi-element parameter. Access to subsequent addresses
will return only one element. It is not possible to specify data format for the
individual element and the default format is assumed.

20-20 PC 3000 Function Blocks

History

Offset Parameter Type
0 Composite parameter
1 Index Integer
2 Type Integer
3 Area Integer
4 State Integer
5 Level Integer
6 Count Integer
7 Occured Time Integer
8 Occured Position Real
9 Acked Time Integer
10 Inactivated Time Integer
11 Inactivated Position Real

The offset refers to the offset from the base address. As an example, if the slave
address is set up with an address of 'EBA90' and the associated Bisync slave block
has a GID setting of '0' the following address would apply:

Offset Parameter Type
00 A90 Composite parameter
00 A91 Index Integer
00 A92 Type Integer
00 A93 Area Integer
00 A94 State Integer
00 A95 Level Integer
00 A%96 Count Integer
00 A97 Occured Time Integer
00 A98 Occured Position Real
00A99 Acked Time Integer
00 A9 Inactivated Time Integer
00A9 Inactivated Position Real

PC 3000 Function Blocks

20-21

History

For further details on alarm addressing see the section covering alarm
communications.

ClrLog (CLR)

This is an input/output used to clear down the alarm log. It is set by the user and
cleared by the block.

Status (ST)

This refers to the function block status and may take the states Go in normal
operation or NOGO in the event of an error. The error is indicated by the
parameter Error_No.

Error No (ERR)

This indicates the function block error number if an error is detected when the
PC3000 programme runs, the error will be indicated as shown in the table below
and the block status will become NOGO

The following errors may be detected and indicated:

Error Error Cause and Action
Number

105 Too many buffers There are more than 20 buffers (Cur_Alarms and
History function blocks). Any buffer indicating this
error will not be operational and the number of
buffers must be reduced.

106 Buffer ID out of range The Log ID is less than O or greater than 9. Change
the Buffer ID and sensor ID's associated with this
buffer.

107 Duplicate ID A buffer already exists with this ID. Change the buffer
ID and sensor ID's associated with this buffer.

NumLogged (NL)

Indicates the total number of alarms in the buffer.

20-22

PC 3000 Function Blocks

History

Act_Index (AIX)

This will be equal to Index if the parameter Index lies in the following range"
O<Index<=NumLogged

It will be equal to zero for values of Index outside this range.

Type (TYP)
This indicates the alarm type at the position in the log specified by Act_Index.

Area (A)

This parameter refers to the area which the alarm entry currently specified by
Ac_Index came from.

Count (C)

The number of times the alarm currently specified by Act-Index became active.

Occurred t(OCT)

Time that alarm currently specified by Act_Index became active.

Occurred p (OCP)

A value that indicates the position e.g. length at which the alarm specified by
Act_Index became active.

Acked 1{AKT)
The time that alarm specified by Act_Index became acknowledged.

Inactvtd_t(IAT)

The time that alarm specified by Act_Index was inactivated.

PC 3000 Function Blocks 20-23

History

Inactvtd P (IAP)

A value that indicates the position e.g. length at which the alarm specified by
Act_Index became active.

The following diagram summarises the function of these parameters:

Signal
(Position, length
etc.)
Alarm
Condition
|
| I
| I
| I
Acknowledge | :
|
| | ’
STATE | ActNak | ActAck | Clearedto ActNak NactNak
| | | History Block
PARAMETERS Occured. t Acked_t Inactvd_t
Occured_p Inactvd_p

Alm_Str (STR)

Current value of alarm string for alarm specified by Act_Index. The alarm string
will typically be used to store a text message associated with that alarm.

Alarm Communications

The following provides further details or access to the contents of the historical
alarm buffer via the communications interfaces.

20-24 PC 3000 Function Blocks

History

Eurotherm Bisync interface

The data is accessed by means of the slave parameter with the address set by
'‘Comms Addr'. The fields within the composite parameter described earlier are
in the same order as the entries listed in the tables.

As an example, to read entry 3 in the alarm list, the Index" is set to 3:
EOTO0000STXA90RS>3ETX?

The composite parameter may then be read back:
EOTO0000A90ENQ

The reply is:

STXA90RS>3us>typeus>areaus.stateus>level
us>countus>outimeus @oproduced

us>atimeus>itimeus>@iproduced

PC 3000 Function Blocks 20-25

History

Parameter Atiributes

Name Type Cold Start Read Write Type Specific
Access | Access Information
CommsAddr | STRING " Oper Oper Max 13
Characters
Logld DINT 1 Oper Oper High Limit | 255 Low
Limit 1
Index DINT 0 Oper Oper High Limit | 255 Low
Limit 1
ClcLog BOOL Off (0) Oper Oper Senses Off (0)
On (1)
Status BOOL NOGO (0) | Oper Oper Senses NoGo (0)
Go(1)
Error_ No DINT 0 Oper Oper High Limit | 255
Low Limit 0
NumLogged | DINT 0 Oper Oper High Limit | 255
Low Limit 0
Actindex DINT 0 Oper Oper High Limit | 255
Low Limit 0
Type DINT 0 Oper Oper High Limit | 255
Low Limit 0
Area DINT 0 Oper Oper High Limit | 255
Low Limit 0
Couint DINT 0 Oper Oper High Limit | 255
Low Limit 0
Occurred _t DATE_AND_TIME Oper Oper High Limit
Low Limit
Occurred p | REAL 0 Oper Oper High Limit
Low Limit
Acked_t DATE_AND_TIME Oper Oper High Limit
Low Limit
Inactvid_t DATE_AND TIME Oper Oper High Limit
Low Limit
Inactvtd_t DATE_AND_TIME Oper Oper High Limit
Low Limit
Alm_Str STRING Oper Oper Max length | 255
Characters

Table 20-5 History Parameter Attributes

20-26 PC 3000 Function Blocks

History

DINT

DINT

DINT

DINT

TIME

TIME

BOOL

REAL

STRING

BOOL

Sensor
Type Status

— BOOL

— Area Error_No — DINT

l— DINT

1 BufId Act_State

— Level

— BirthTime

—_ DeathTime

— AlmState

— Produced

— AlmStr

— Inhibit

-

Figure 20-4 Sensor Function Block Diagram

Functional Description

Alarm sensors are the information gathering mechanism in the alarm subsystem.
Alarm sensors gather information such as the time at which the alarm occurred,
and the source of the alarm condition. This date is then logged or stored in an
alarm buffer block Cur_Alms. This live or current alarm buffer is associated with
the alarm sensors by means of a buffer identifier parameter.

Different sensor may be associated with separate alarm buffers if necessary by
assigning different buffet identifier values on each group of sensors.

Sensors may be used to detect an user defined alarm condition or event or they
may be used in conjunction with a Detector block in order to provide information
relating to 'standard’ alarm strategies. "Standard" alarms include High, low,
deviation etc. A user defined alarm might require that a value is exceeded and that
a particular time has elapsed. In the case of user defined alarms, the condition is
defined by any ST expression which evaluates to TRUE or FALSE. this

PC 3000 Function Blocks 20-27

Sensor

expression may be soft wired to the alarm sensors alarm state input.

When the alarm state changes the state is passed to the current alarm buffer.

Function Block Attributes

TYPE: ettt 662

Class: ...uueeieiiierereececeeee e ALARMS

Default Task:cccuuveveneiiieniiiiiiieennnes Task 1

Short List: .oceeeeeieeeieeeeeeeeeeeeeee e Type, Area, BufID, Alm_Str
Memory Requirementsc..cceueeee.. 326 Bytes

Parameter Descriptions

The Sensor function block provides the following parameters:

Bufld (BID)

This alarm buffers identifier (ID). It is the reference by which the alarm sensor is
are connected to or associated with the Cur_Alms function block.

Type and Area (TYP) and (AR)

The type and area can be used in two different ways. In some alarm systems
alarms are grouped into a type (e.g. 'process value over range') and an area (e.g.
Loop a). Each alarm sensor's type and area combined give a unique reference
(there will only be one sensor with type 1 and area 5, for instance). This system
of alarms is particularly useful with Xycom terminals, where a complete alarm
message (e.g. 'Process Value Overrange Loop 1') can be generated from two bytes
of data.

Alarm systems with no concept of type and area just need a unique number to
identify each alarm sensor block.

Level (L)

Different alarms may require different actions in the control system. For instance,
a deviation from setpoint alarm may just be a warning, whereas process value over
range may require that the control system, shuts down. To allow this, each alarm
sensor has a Level input. The alarm log records the level and the maximum level

20-28 PC 3000 Function Blocks

Sensor

in the alarm log.

AlmState (S)

This is a boolean parameter which is wired with the fault condition. For instance,
an over temperature alarm may have

sensor.l.State := AIl.Process_Val > alm_Level.Value:

Produced (P)

The produced parameter is used in processes where a position or volume of
product must be logged in the alarm buffer. For instance, a spark fault in a cable
needs the position not the time logged.

Alm_Str (STR)

Applications using simple panels such as a VT100 terminal or the Euro Panel
cannot calculate an alarm string from a numeric reference. Each sensor function
block therefore has an alarm string input for messages.

Inhibit (INH)

The inhibit function forces the alarm to the inactive state. It is used to disable
alarms during certain phases of the process. For instance, deviation alarms may be
turned off while an over door is opened. If the almState is active when inhibit is
set low, a new alarm will be generated immediately.

Status (ST)

The status is a simple Go/NOGO parameter. The reason for the error is indicated
by the Error_No parameter.

Error_No (ERR)

This indicates the function block error number. If an error is detected when the
PC3000 programme runs, the error will be indicated as shown in the table below
and the block status will become NOGO>

PC 3000 Function Blocks 20-29

Sensor

The following errors may be detected and indicated:

Error Error Cause and Action
Number
103 No current alarm buffer | There is no Cur_Alarms block with a buffer

identifier of Bufld in the programme. Check the
Bufld parameters on the sensor and current alarm
blocks.

133 No more space in the log| The current alarm block with a buffer identifier of
Bufld has 128 uncleared alarms in it. The alarm
which has just occurred does not have a higher level
than the lowest level alarm in the log and has not
been added. There are too many alarms occurring in
a short period. If this occurring during start up or
commissioning, disable alarms using the Inhibit input
on the sensors.

Time Hysteresis ((Birth Time, (BT) and Death Time, (DT))

Time Hysteresis requires that the alarm remains in a particular state for a time
before the alarm is actioned. The sensor has an Act_State output, so that the actual
alarm state after hysteresis can be monitored.

The Inhibit or function disables the alarm regardless of time hysteresis. When
Inhibit is turned off, however, the alarm must remain active for the Birth/Time
before an alarm is generated.

20-30 PC 3000 Function Blocks

Sensor

Name Type Cold Start Read Write Type Specific
Access | Access Information
Type DINT 0 Oper Oper High Limit | 255
Low Limit 0
Area DINT 0 Oper Oper High Limit | 255
Low Limit 0
BufiD DINT 1 Oper Oper High Limit | 255
Low Limit 0
Level DINT 1 Oper Oper High Limit | 255
Low Limit 1
Birth Time TIME Oms Oper Oper High Limit
Low Limit
Death Time | TIME Oms Oper Oper High Limit
Low Limit
AlmState BOOL Off (0) Oper Oper Senses Off (0)
On (1)
Produced REAL 0 OPER BLOCK | High Limit
Low Limit
Alm_Str STRING 0 Oper Oper Max length | 255
Characters
Inibit BOOL Off (0) Oper Oper Senses Off (0)
On (1)
Status BOOL NOGO (0) | Oper Oper Senses Off (0)
On (1)
Error No DINT 0 Oper Oper High Limit | 255
Low Limit 0
Ac_State BOOL Off (0) Oper Oper Senses Off (0)
On (1)

Table 20-6 Sensor Parameter Attributes

PC 3000 Function Blocks

20-31

Sensor 16

SENSOR 16 FUNCTION BLOCK

To reduce the time spent instantiating function blocks, there is also an alarm
sensor 16 block, which contains 16 nested sensor function blocks. The blocks
have a common Type, and contiguous Area parameters. They also have common
hysteresis values, alarm string, and inhibit inputs.

20-32 PC 3000 Function Blocks

Detector

DETECTOR FUNCTION BLOCK

BOOL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

TIME

REATL

-

Dv_Hi_Alm_SP

Detector

Enable

Process Val
Setpoint
Hi_Alarm SP

Lo_Alarm_ SP

Dv_Lo Alm SP

Dv_Bd _Alm SP
Rat_Chng_ SP

Rat Time

Hysteresis

N\

Hi Alm
Lo_Alm
Dv-Hi_ Alm
Dv_Lo_Alm
Dv_Bd_Alm

Rat_Chng Alm

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

Figure 20-5 Detector Function Block Diagram

Functional Description

The Detector function block takes as its input the process value and set point
together with a set of limits within which the process value should operate. The
block then has boolean outputs corresponding to each of these limits. The limit

checks performed are

AN O o e

High limit

Low limit

High deviation limit
Low deviation limit

Deviation band limit

Rate of change limit

A hysteresis function is also built into all the limit checks except the rate of change

PC 3000 Function Blocks

20-33

Detector

and an inhibit is provided to turn all outputs off.

The function block is used in conjunction with an alarm sensor function block
which stores data such as time at which alarm occurred, etc. The relevant detector
block output should be wired to an alarm sensor AlmState input.

Function Block Attributes

TYPE: coveeeeeieeee e 6674

Class:..ccoceeeeecceeeeeeccneeenan, ALARMS

Default Task: Task 1

Short List: c.coueveenreennnneee. Enable, Process_Val, Setpoint, Dv_Bd_Alm

Memory Requirements: ...66 Bytes

Parameter Descriptions

The Detector function block provides the following parameters:

Enable (EN)

When the Enable input is off (*0%*) then all outputs are Off (*0*) and the
averaging for the rate of change alarm is re-set. When Enable is on all outputs act
as described below.

Process Val(PV)

The process value to be monitored.

Setpoint(SP)

The corresponding setpoint for the process, used for deviation alarms.

Hi_Alarm_SP (HAS)

The level above which the high alarm will become active.

20-34 PC 3000 Function Blocks

Detector

Lo Alarm_SP (LAS)

The level below which the low alarm will become active.

Dv_Hi_Alm_SP (DHS)

The deviation from setpoint above which the deviation high alarm will become
active.

Dv_Lo_Alm_SP (DLS)

The deviation from setpoint below which the deviation low alarm will become
active.

Dv_Bd_Alm_SP)DBS)

The deviation from setpoint beyond which the deviation band alarm will become
active.

Rat Chang SP (RCS)

The change in process value over Rat_Time beyond which a rate of change alarm
will be produced.

Rat Time (RT)

The time over which the rate of change alarm is calculated.

Hysteresis (HYS)

The hysteresis level for the high, low, high deviation, low deviation and deviation
band alarms.

The function of each of the outputs is described below:

Hi-Alm (HA)
If Process_Val<Hi_Alm_SP - Hystersis: Hi_ Alm=Off(*0%*)
Hi-Alm_SP - Hysteresis<Process_Val<Alm_SP Hi_Alm=unchanged
Hi_SAlm-SP<Process_Val: Hi_ Alm=On(*0%*)

PC 3000 Function Blocks 20-35

Detector

Lo-Alm (LA)
If Process_Val>Lo-Alm_SP+Hysteresis: Lo_Alm=0Off(*0%*)
Lo_Alm_SP+Hysteresis>Process_Val>Lo_Alm_SP: Lo_Alm=unchanged
Lo_Alm_SP>Process_Val: Lo_Alm+On(*1%*)

Dv_Hi_ Alm (DHA)
If deviation<Dv_Hi_Alm_SP-Hysteresis: Dv_Hi_Alm=0ff(*0*)
Dv_Hi_Alm_SP-Hysteresis_deviation,Dv_Hi_Alm-SP:
Dv_Hi_Alm=unchanged
Dv_Hi_Alm_SP<deviation Dv_Hi_Alm=0On(*1%*)

Deviation = Process_Val - Setpoint

Dv Lo Alm (DLA)
If deviaton,Dv_Lo-Alm_SP - Hysteresis: Dv_Lo_Alm=0ff(*0%*)
Dv_Lo_Alm_SP - Hysteresis<deviation<Dv_Lo_Alm-Sp:
Dv_Lo_Alm_=unchanged
Dv_Lo_Alm_SP<deviation: Dv_Lo_Alm=On(*1%*)

Deviation + Setpoint - Process_Val

Dv_Bd-Alm ((DBA)
If deviation<Dv_Bd_Alm_SP-Hysteresis: Dv_Bd_Alm=0Off(*0%)
Dv_Bd_Alm_Sp-Hysteresis<deviation<Dv_Bd_Alm_SDv_Bd_AImS_P
Dv_Bd_Alm=unchanged
Dv_Bd_Alm-SP<deviation: Dv_Bd_Alm=0On(*1%)

Deviation + Setpoint - Process_Val

20-36 PC 3000 Function Blocks

Detector

Rat Chng Alm (RCA)

The process value is filtered by taking the previous filtered value and the current
process value:

PV filtered m=G*PV filtered(n-1)+PV(n)4

Note that this algorithms does not take into
account startup conditions and these should
be considered in the user programme.

The rate limit check will be performed on the filtered Process_Val by taking the
absolute difference PVfiltered(n)-PVfiltered(n-1) and dividing by the sample time
to provide a rate. This will then be compared with the rate given by the
Rat_Chang_SP/Rat_Time

To summarise:
Rat_Chng_Alm= | PVfiltered(n)-PVfiltered(n-1)|>(Rat_Chang_SP/Rat_Time)

PC 3000 Function Blocks 20-37

Detector

Name Type Cold Start Read Write Type Specific
Access | Access Information
Enable BOOL Off (0) Oper Oper Senses Off (0)
On (1)
Process_Val REAL 0 Oper Oper High Limit
Low Limit
Setpoint REAL 0 Oper Oper High Limit
Low Limit
Hi_Alm_SP REAL 0 Oper Oper High Limit
Low Limit
Lo Alm_SP REAL 0 Oper Oper High Limit
Low Limit
Dv_Hi_Alm_SP REAL 0 Oper Oper High Limit
Low Limit
Dv_Lo_Alm_SP REAL 0 Oper Oper High Limit
Low Limit
Dv_Bd_Alm_SP REAL 0 Oper Oper High Limit
Low Limit
Rot_Chang_ SP REAL 1 Oper Oper High Limit
Low Limit
Rat Time TIME Tm Oper Oper High Limit
Low Limit
Hi_Alm BOOL Off (0) Oper Oper Senses Off (0)
On (1)
Lo Alm BOOL Off (0) Oper Oper Senses Off (0)
On (1)
Dv_Hi Alm BOOL Off (0) Oper Oper Senses Off (0)
On (1)
Dv Lo Alm BOOL Off (0) Oper Oper Senses Off (0)
On (1)
Dv_Bd_Alm BOOL Off (0) Oper Oper Senses Off (0)
On (1)
Rat_Chng Alm BOOL Off (0) Oper Oper Senses Off (0)
On (1)
Table 20-7 Detector Parameter Attributes
20-38 PC 3000 Function Blocks

