Chapter 15
PROGRAMMER

Edition 3

Overview

RAMP _Target....coooeniieiiiiiiiie e 15-1
Functional Descriptioncccceeveviieiviieriinieeineeeenn. 15-1
Function Block Atftributescoooeveiiiiiinniiiieiiiiennen. 15-2
Parameter Descriptionsccoovvviiiiiiiiniiniciinennnn, 15-2
Parameter Attributescceeeeiiieiiiiiiien e, 15-5

ROMP RATE ...t 15-6
Functional Descriptioncccccoveeieiiiinieiiiieeeeennnn. 15-6
Function Block Aftributescoooviiiiiiiiniiiiiiiiinnn, 15-8
Parameter Descriptionsc.ccevevuieieinieiinieeinennnnne. 15-8
Parameter Attributescccccooviiiieiiiiiiiii e, 15-11

Prog8Ratecovveiiiiiiiie e 15-12
Functional Descriptionccccouviieiiiiiiieiiiiiieeeee. 15-15
Function Block Aftributesccooeeviiiiiiienniiiiiiinnnnn. 15-21
Parameter Descriptions.......ccccceeveviviiiiiiniineennnnn. 15-21
Parameter Aftributescouvvveviiiiiiiiiiin e, 15-32

Prog8Time 15-34
Functional Descriptionccccevvvvieiiiiieeineeereene. 15-37
Function Block Atftributesccooeevieiiiiienniniiiiinnnnn. 15-43
Parameter Descriptionscccccvveviiiiiieiiiiinneennnenn. 15-43
Parameter Attributescceeeiiiiiiiiiiieieece, 15-54

PC 3000 Function Blocks Cont. 154

Overview

This class of function blocks contains both simple ramp function blocks which can
be used to ramp the value of a variable in a linear, time dependent fashion and
more complex program function blocks which allow multi-segment ramp/dwell
profiles to be created. Both function blocks are available in ramp rate and time to
target versions.

Cont. 15-ii PC 3000 Function Blocks

Ramp Target

RAMP_TARGET FUNCTION BLOCK

Ramp Target

enoM — | Mode Output REAL
REAL —: Setpoint Ramp_End BOOL
rimg —| | Target_Time Ramp_Act BOOL
REAL —-|: Reset_Output HB_Active BOOL
ENUM —|: HB_Mode Time_ Remain TIME
REAL —|: HB Deviation

REAL —|: Process Val

&

Figure 15-1 Ramp_Target Function Block Diagram

Functional Description

The Ramp_Target function block ramps the Qutput towards a target Setpoint so
that this setpoint is achieved in the time given by Target_Time. The block has
three modes of operation, which are defined by the Mode. Holdback functionality
can be activated to restrict the Rate in the event of a sluggish Process_Val.

Holdback serves to hold the Qutput at a constant value in the event that the
deviation between the Output and the Process_Val exceeds the value defined by
HB_Deviation. The Figure below shows holdback acting in response to the
Process_Val lagging behind the increasing ramp Output. When the Process_Val
input deviates from the ramp Output by more than HB_Deviation, the Output is
held at constant value until the deviation decreases below HB_Deviation. In the
case shown, this has the effect of increasing the effective time to achieve setpoint
above that indicated by Target_Time.

PC 3000 Function Blocks 15-1

Ramp Target

Holdback activated by -
PV, OP Process_Val moving _ -
outside lower band g Output
-
|
Upper /s :
/
% : \ Process_Vall
|
7 |
/ |
/S
% 7
- |
/~— Lower
/
Time
Figure 15-2 Holdback operation with lagging Process Val
Function Block Attributes
TYPE: e, 3F03
Class: . ccoeeeeeeeeeeicceeceececcnne PROGRAMMER
Default Task:cccoeeeeee.n... Task 2
Short List: cooeueeveeeeiiieeenen. Mode, Setpoint, Target_Time, Output

Memory Requirements: 60 Bytes

Parameter Descriptions

Mode (M)

Determines whether Qutput is being updated or not.

Reset(0):
will be set to No.

Run(1):

in Reset mode the Output will be track Reset_OQutput and Ramp_Act

in Run mode the Output will ramp towards Setpoint at a constant rate

such that setpoint will be achieved in Target_Time provided the block remains in

Run mode.

Hold(2):
before entering Hold mode.

Setpoint (SP)

in Hold mode the Qutput will remain constant at the value reached

The Setpoint is the target value to which the Output is ramped.

15-2

PC 3000 Function Blocks

Ramp Target

Target Time (TT)

The time that is to be taken in changing Qutput from its current value to Setpoint.
When the block is set into Run mode from Reset, the rate required to achieve this
change in output is calculated and maintained unless some change occurs to one of
the function block inputs.

If holdback becomes active or Mode is switched to Hold, the Qutput is frozen.
When holdback is no longer active or mode reverts to Run, the output continues
changing at the calculated rate towards output provided neither Target_Time nor
Setpoint have been changed during the period of hold.

If a change is made to Target_Time or Setpoint whilst the function block is in
Run mode, the rate of change is immediately recalculated and the Output starts
changing at this new rate.

Reset Output (ROP)

The value of this input drives Qutput whilst the function block is in Reset mode.

HB Mode (HBM)
Determines the way in which holdback operates.
Off(0): holdback is disabled.

Lower(1): holdback will be enabled when the Output minus Process_Val is
greater than HB_ Deviation.

Upper(2): holdback will be enabled when the Process_Val minus Qutput is
greater than the HB_Deviation.

Band(3): holdback will be enabled when the absolute value of Qutput minus
Process_Val is greater than the HB_Deviation.

HB Deviation (HBD)

The HB_Deviation parameter defines the amount of deviation allowed between
Output and Process_Val before holdback is applied, subject to HB_Mode.

Process Val (PV)

The Process_Val parameter operates in conjunction with HB_Deviation to
determine whether holdback is active. The parameter is not used if HB_Mode is
set to Off.

Output (OP)
The Output parameter is the Real output of the Ramp Target function block,
which will ramp towards Setpoint when the Mode is set to Run and the function

block is not in holdback. The Output will equal Reset_Output when the Mode is
set to Reset.

PC 3000 Function Blocks 15-3

Ramp Target

Ramp End (RE)

The Ramp_End parameter defines when the Qutput has completed its ramping to
the Setpoint. When the Mode is equal to Reset, Ramp_End will be set to False
unless Setpoint is equal to Output. When the Mode is equal to Run, Ramp_End
will be set to True only when the Qutput equals the Setpoint. If the Setpoint is
changed after Ramp_End has become True the Ramp_End will then change to
False until Qutput is equal to Setpoint again. When in holdback, the operation of
Ramp_End is unchanged, with Ramp_End being set to False unless Output
equals Setpoint.

Ramp_ Act (RAC)

The Ramp_Act defines whether the Qutput is ramping towards Setpoint. When
the Mode is set to Reset, Ramp_Act will be set to No. When the Mode is set to
Run or Hold, Ramp_Act will be set to Yes when the QOutput does not equal
Setpoint and will be set to No when the Qutput equals the Setpoint.

HB_Active (HBA)

The HB_Active parameter is an indicator to the action of the holdback function.
When the Mode parameter is set to Reset (0) or Hold (2), HB_Active will equal
No (0). When the Mode parameter is set to Run (1) and HB_Mode is set to Lower
(1), Upper (2) or Band (3), HB_Active will be equal Yes (1) if the block is in
holdback.

Time_Remain (TR)

Indicates the time that will currently be required for Qutput to reach Setpoint.
This parameter is updated every function block execution cycle.

15-4

PC 3000 Function Blocks

Ramp Target

Parameter Atiributes

Name Type Cold Read Write Type Specific Information
Start |Access | Access
Mode ENUM Reset (0) |[Oper |Oper See Parameter descriptions
Setpoint REAL 0 Oper |Oper High Limit|+3-402823E+38
Low Limit |-3-402823E+38
Target Time |TIME 0 Oper |Oper High Limit|23d23h59m59s999ms
Low Limit |Oms
Reset Output |REAL 0 Oper |Oper High Limit|+3-402823E+38
Low Limit |-3-402823E+38
HB Mode ENUM Off (0) Oper |Oper See Parameter descriptions
HB_Deviation |REAL 0 Oper |Oper High Limit | +3-402823E+38
Low Limit |-3-402823E+38
Process_Vall REAL 0 Oper |Block High Limit | +3-402823E438
Low Limit |-3-402823E+38
Output REAL 0 Oper |Block High Limit|+3-402823E+38
Low Limit |-3-402823E+38
Roamp_End BOOL False (0) |Oper |Block Senses False(0)
True(1)
Ramo_Act BOOL No (0) Oper |Block Senses No(0)
Yes(1)
HB Active BOOL No(0) Oper |Block Senses No(0)
Yes(1)
Time_Remain |TIME Oms Oper |Block High Limit | 23d23h59m59s999ms
Low Limit |Oms

Table 15-1 Ramp_Target Parameter Atiributes

PC 3000 Function Blocks 15-5

Ramp_Rate

RAMP_RATE FUNCTION BLOCK
Prior to version 3.00 this function block was located in class OTHERS and was

called Ramp.

ENUM
REAL

REAL

REAL
ENUM
REAL
REAL

ENUM

Q0000000

REAL

BOOL

Setpoint
Rate Ramp_Act BOOL
Reset_Output HB_Active BOOL

HB_Mode Time Remain
HB Deviation
Process_Val

Rate Units

N

Figure 15-3 Ramp Rate Function Block

Functional Description

The Ramp_Rate function block ramps the Qutput at a constant Rate towards a
target Setpoint. The block has three modes of operation, which are defined by the
Mode. Holdback functionality can be activated to restrict the Rate in the event of

a sluggish Pro

cess_Val.

The remaining time to complete the current ramp is given as an output.

Modes of Operation:

Reset (0):

Hold (2):

Run (1):

in Reset mode the Output will be set to Reset_QOutput and
Ramp_Act will be set to No (0).

in Hold mode the Output will remain constant at the value
reached before entering Hold mode

in Run mode the Output will ramp towards Setpoint at a rate
defined by the Rate parameter and Ramp_Act will be set to Yes(1).
When the Output has reached Setpoint, Ramp_End will be set to
True (1).

15-6

PC 3000 Function Blocks

Ramp_ Rate

Holdback Operation

Holdback serves to hold the Qutput at a constant value in the event that the
deviation between the Output and the Process_Val exceeds the value defined by
HB_Deviation. The Figure 15-4 below shows holdback acting in response to the
Process_Val lagging behind the increasing ramp Output. When the Process_Val
input deviates from the ramp Qutput by more than HB_Deviation, the ramping
Output is held at constant value until the deviation decreases below
HB_Deviation. In the case shown, this has the effect of limiting the ramp Rate to
be equal to the maximum rate of rise of Process_Val.

Holdback activated by -~
PV, OP Process_Val moving -
outside lower band “g—— Output
b
’s
Upper /:
7
% : \ Process Val
|
4 |
|

Time

Figure 15-4 Holdback operation with lagging Process Val.

Modes of Holdback Operation:
OFF(0): in OFF mode the holdback option is disabled.

LOWER (1): in LOWER mode the holdback will be enabled when the Output
minus Process_Val is greater than HB_Deviation.

UPPER (2): in UPPER mode the holdback will be enabled when the
Process_Val minus Output is greater than the HB_Deviation.

BAND (3): in BAND mode the holdback will be enabled when the absolute
value of QOutput minus Process_Val is greater than the
HB_Deviation.

PC 3000 Function Blocks 15-7

Ramp_Rate

Function Block Attributes

TYPE: e 3F 01
Class:...ccoceeeeeeerreeeeeciieeeee s PROGRAMMER

Default Task:ccccceeeeuueenee. Task 2

Short List: cceveevieeiiiinen. Mode, Setpoint, Rate, Output

Memory Requirements: 84 Bytes
Execution Time: 282 u Secs

Parameter Descriptions

Mode (M)

Mode defines the mode of operation of the function block, see earlier description.

Setpoint (SP)
The Setpoint is the target value to which the Output is ramped.

Rate (R)

The Rate parameter determines the rate at which the Qutput changes. Its units are
defined by the parameter Rate_Units.

Reset Output (ROP)

The Reset_QOutput parameter defines the value written to the parameter Qutput
when the Mode is Reset.

HB Mode (HBM)
The HB_Mode parameter defines the mode of operation of holdback.

HB_Deviation (HBD)

The HB_Deviation parameter defines the amount of deviation allowed between
Output and Process_Val before holdback is applied.

15-8 PC 3000 Function Blocks

Ramp_ Rate

Process Val (PV)

The Process_Val parameter operates in conjunction with HB_Deviation to
determine whether holdback is active. The parameter is not used if HB_Mode is
set to Off (0).

Rate Units (RU)

The Rate_Units parameter is used to define the units in which the rate of change
of Output are defined.

Output (OP)

The Output parameter is the Real output of the Ramp_Rate function block, which
will ramp towards Setpoint when the Mode is set to Run (1) and the function
block is not in holdback. The Output will equal Reset_Qutput when the Mode is
set to Reset (0).

Ramp End (RE)

The Ramp_End parameter defines when the Qutput has completed its ramping to
the Setpoint. When the Mode is equal to Reset (0), Ramp_End will be set to
False (0). When the Mode is equal to Run (1), Ramp_End will be set to True (1)
only when the Qutput equals the Setpoint. If the Setpoint is changed after
Ramp_End has become True (1) the Ramp_End will then change to False (0)
until Output is equal to Setpoint again. When in holdback, the operation of
Ramp_End is unchanged, with Ramp_End being set to False (0) unless Output
equals Setpoint.

Ramp_Act (RA)

The Ramp_Act defines whether the Output is ramping towards Setpoint. When
the Mode is set to Reset (0), Ramp_Act will be set to No (0). When the Mode is
set to Run (1) or Hold (2), Ramp_Act will be set to Yes (1) when the Qutput does
not equal Setpoint and will be set to No (0) when the Qutput equals the Setpoint.

HB_Active (HBA)

The HB_Active parameter is an indicator to the action of the holdback function.
When the Mode parameter is set to Reset (0) or Hold (2), HB_Active will equal
No (0). When the Mode parameter is set to Run (1) and HB_Mode is set to Lower
(1), Upper (2) or Band (3), HB_ Active will be equal Yes (1) if the block is in
holdback.

PC 3000 Function Blocks 15-9

Ramp_Rate

Time_Remain (TR)
Indicates the time that will be required for the output to reach the setpoint. This
parameter is updated at every function block execution.

15-10 PC 3000 Function Blocks

Ramp_ Rate

Parameter Atiributes

Name Type Cold Read | Write | Type Specific Information
Start Access |Access
HB_Active BOOL No (0) Oper Block Senses No (0)
Yes (1)
HB_Deviation REAL 0.0 Oper Oper High Limit |999,999
Low Limit |-99,999
HB Mode ENUM |Off (0) Oper Oper Senses Off (0)
Lower (1)
Upper (2)
Band (3)
Mode ENUM Reset (0) Oper Oper Senses Reset (0)
Run (1)
Hold (2)
Output REAL 0.0 Oper Block High Limit {999,999
Low Limit |-99,999
Process_Vall REAL 0.0 Oper Oper High Limit {999,999
Low Limit |-99,999
Ramp_Act BOOL No (0) Oper Block Senses No (0)
Yes (1)
Ramp_End BOOL False (0) Oper Block Senses False (0)
True (1)
Rate REAL 0.0 Oper Oper High Limit | 100,000
Low Limit |0
Rate_Units ENUM | /Second (0)|Oper Oper Enumerate |/Second (0)
d Values |/Minute (1)
/Hour (2)
/Day (3)
Reset Output REAL 0.0 Oper Oper High Limit {999,999
Low Limit |-99,999
Setpoint REAL 0.0 Oper Oper High Limit {999,999
Low Limit |-99,999
Time_Remain TIME Oms Oper Block High Limit |23d23h59m59s999ms
Low Limit |Oms
Table 15-2 Ramp Rate Parameter Attributes

PC 3000 Function Blocks

15-11

Prog8Rate

PROGSRATE FUNCTION BLOCK

ENUM

STR

STR

BOOL

DINT

STR

REAL

ENUM

REAL

ENUM

REATL

ENUM

DINT

DINT

ENUM

BOOL

DINT

REAL

TIME

DINT

REAL

NO000000000000000000(]

Prog8Rate
Mode Mode
Address Output
RealFormat HB Active
WriteInhibit ProgramEnd
ProgNumber ProgNumber
ProgName ProgName

Reset_ Output
Start Mode
Process_Val
HB Mode

HB Deviation
Rate Units
End_Segment
Num_Loops
Next ProgNum
RampRatel
RampDO1
RampLvll
DwellTimel
DwellDO1

RampRate?

Reset_Output
Start_Mode
Status

HB Mode

HB Deviation
Rate Units
End_Segment
Num_ TLoops
NextProgNum
RampRatel
RampDO1
RampLivll
DwellTimel
DwellDO1

RampRate?

ENUM

REAL

BOOL

BOOL

DINT

STR

REAL

ENUM

ENUM

ENUM

REAL

ENUM

DINT

DINT

ENUM

BOOL

DINT

REAL

TIME

DINT

REAL

Figure 15-5 Prog8Rate Function Block Diagram

15-12

PC 3000 Function Blocks

Prog8Rate

DINT

REAL

TIME

DINT

REAL

DINT

REAL

TIME

DINT

REAL

DINT

REAL

TIME

DINT

REAL

DINT

REAL

TIME

DINT

REAL

DINT

REAL

TIME

. V

piNT — | RampDO2 RampDO2
rREAL — | RampLvl2 RampLv12
TIME —I: DwellTime2 DwellTime2
pinT — | DwellDO2 Dwe11D02
REAL —I: RampRate3 RampRate3
DINT —I: RampDO3 RampDO3
Real — | mamprvis RampLiv13
TIME _|: DwellTime3 DwellTime3
pINT —]__| DyellD03 Dwe11DO3
REAL _|: RampRate4 RampRated
pINT — | pamppos RarpDO4
REAL —] Rarplvl4 RampLiv14
T _|: DwellTime4d DwellTimed
DINT _: DwellDO4 DwellDO4
REAL —1 RampRate5 RampRate5
DINT —|: RampDO5 RanmpDO5
REAL —1 RampLwvl5 RampLiv15
e —] | DwellTime5 DwellTime5
pint —[| DwellDOS5 Dwel1D05
reaL — | RampRate6 RampRate6
pint — | RampDO6 RampDO6
rREAL —| | RampLvlé RampLv16
TIME —|: DwellTime6 DwellTime6

\ ~

Figure 15-5 Prog8Rate Function Block Diagram (continued)

PC 3000 Function Blocks

15-13

Prog8Rate

DINT

REAL

DINT

REAL

TIME

DINT

REAL

DINT

REAL

TIME

DINT

DINT

aialalalalalalalalalals

Dwel 1DO6
RampRate7
RampDO7
RampLvl11l7
DwellTime7
Dwel 1DO7
RampRate8
RampDO8
RampLv11l8
DwellTime8
DwellDOS8

Comms SegNum

\-

DwellDO6
RampRate?
RampDO7
RampLvl117
DwellTime7
DwellDO7
RampRate8
RampDO8
RampLvl118
DwellTime8
DwellDOS8
LoopsRemain
CurrentSeg
CurrentMode
CurrentTmRem
SegTmRem
ProgTmRem
Dig Out_1
Dig Out_2
Dig Out_3
Dig_Out_4
Dig_Out_5
Dig_Out_6
Dig_ Out_7

Dig_Out_S8

DINT

REAL

DINT

REAL

TIME

DINT

REAL

DINT

REAL

TIME

DINT

DINT

DINT

BOOL

TIME

TIME

TIME

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

Figure 15-5 Prog8Rate Function Block Diagram

15-14

PC 3000 Function Blocks

Prog8Rate

Functional Description

Segment

No

The Prog8Rate function block produces an Output that can be used as a setpoint
profile to drive a control loop. By profile we mean a pre-defined variation of the
setpoint as a function of time. This is similar to facilities provided bythe
Eurotherm 818/902 multiprogrammer instruments.

It is possible to store profiles (with certain other related settings) as named
programs in the PC3000 file store system.

A profile consists of up to eight segments - the number of segments in use in any
given profile is specified by the input End_Segment. Each segment would
normally be defined as a ramp followed by a dwell period, as in segments 1, 2, 3
and 8 of Figure 15-3

Output

A .

Figure 15-6 Setpoint Profile: Prog8Rate.Output as a function of Time

A segment can also be defined as only a ramp, as in segments 4 and 5 above,
meaning that the next segment starts as soon as the ramp finishes. This allows
peaks or changes of gradient to be created within a profile.

Alternatively, a segment may only be a dwell period, meaning any change in level
of output is achieved as a step change. See segments 6 and 7 above.

A program will always start with segment 1 unless the parameter Start. Mode
dictates otherwise. See later for more detail on this. The program will then proceed

PC 3000 Function Blocks 15-15

Prog8Rate

sequentially through each segment until the last configured segment is reached, or
the eighth segment is reached. The current segment number and its mode (ramp or
dwell) is reported.

The starting value of Output can be preset by means of the input Reset_QOutput.
Whenever the Mode input is set to Reset, the Qutput will be set to Reset_Output.
A segment starts from the current value of Qutput (see Figure 15-4) and it may
therefore be necessary to set mode to Reset and then back to Run in order that the
first segment starts from a known position.

With the Prog8Rate function block, each ramp segment of a profile is specified by
means of a ramp rate (RampRatel to RampRate8) and a target setpoint
(RampLvl1 to RampLvl8). The rate units e.g. per second, per hour etc. can also
be defined.

A profile may be repeated up to 999 times. A profile will always repeat by
jumping from the configured last segment (or the eighth segment) back to segment
1. The current number of loops remaining (excluding the currently running loop)
will always be reported. This means that when the segment indicated by
End_Segment is completed, the Output will then be driven from its current
position towards RampLvl1 at the rate specified by RampRatel. In order to
repeat a profile exactly therefore, the value of RampLvI8 must be the same as the
start value of Output.

A ramp rate of zero will be interpreted as a step or null ramp - the output will
instantly be set to the target level. A dwell time of zero seconds will be interpreted
as a null dwell. No time is required to execute a null ramp or a null dwell.

A segment will be completely skipped (or ignored) if a step (null ramp) and a null
dwell are configured within that same segment. The outputs will not be affected in
any way by a skipped segment.

15-16

PC 3000 Function Blocks

Prog8Rate

Normal Ramp/Dwell sequence

D
R
o
Segment No | |
A A step can be achieved by setting
D the ramp rate in segment n + 1
o zero.
D
R :
: o
Segment No | n \ n+ 1 |
A : Two consecutive ramps can be
! achieved by setting the dwell time
; in segment n to zero.
' R
R | D
: >
Segment No | n | n+1 |

There are no limits to the number of consecutive skipped segments, null ramps or

null dwells. On completion of the previous non-null ramp or dwell, the

programmer will immediately skip the null ramp(s) and null dwell(s) and proceed
to execute the next non-null ramp or dwell, ignoring all null segments. If all eight

PC 3000 Function Blocks

15-17

Prog8Rate

segments are null, the program will immediately end irrespective of the number of
loops remaining.

On completion of a profile (including any repeats), the ProgramEnd flag will
become true. When a program ends, the states of all outputs will remain in the
same state that they were in immediately prior to ending, until the programmer is
reset.

A program can be cut short by setting the last segment that will executed by means
of the End_Segment parameter. The default end segment will be segment 8. Any
segments following the specified end segment will always be ignored - for
example, if the End_Segment is 3, then segments 4-8 will be ignored and the
program will end once segment 3 is completed. If repeats are configured the
program will always repeat by returning to segment 1 from segment 3.

Concatenation of programs is possible using the NextProgNum parameter. On
completion of the current program (i.e. when ProgramEnd becomes true), if the
NextProgNum parameter is non-zero, the programmer will automatically be set to
HOLD, the program corresponding to the program number given by the
NextProgNum parameter will be loaded, and once loaded, the new program will
be set to run according to the Start_Mode of the new program.

A list of program names can be set up using the ProgName and ProgNumber
parameters.

To make the creation of standard "PID with programmer" type of control
straightforward, holdback action is a built-in option of the Prog8Rate function
block. This means that the Output of the Prog8Rate can be prevented from
deviating by more than a preset amount from the current measurement of the
physical variable being controlled. This latter value is fed back to the programmer
through the input Process_Val. Three modes of holdback are supported, and
holdback can be configured using the HB_Mode and HB_Deviation parameters.

A set of eight digital outputs are provided. The state of each of these outputs may
be individually programmed for each ramp and dwell of each segment of a profile.
Their states form part of the program. The digital outputs are only updated on
starting a non-null (i.e. non zero) ramp or dwell, and are not affected by null ramp
or dwell segments.

Outputs are provided to indicate the current program state, including time
progress indicators for the current segment and the total program (including
repeats), and an indication of the number of repeats remaining.

If any parameter changes, then all the times remaining except program time
remaining will be immediately re-calculated and updated to the new time. Program
time remaining is only re-calculated during reset, hold, track, or during a change of
segment (including when going from a ramp to a dwell).

As well as being used to control the operation of the current program, the Mode
parameter may be used to save and retrieve programs from the PC3000 file store.
Programs are handled as text files. Each program is saved and loaded by its name:
names are case sensitive, and consist of up to 8 characters, a full stop then a 3
character extension. This is very simular to the standard MSDOS filename system.

15-18

PC 3000 Function Blocks

Prog8Rate

To avoid unneccessay CPU loading, the loading and saving of programs is spread
over some 50 execution cycles, resulting in a typical delay of 5 seconds before a
program is completely loaded (assuming a 100ms task rate). The Status output
will report the progress of save or load operations.

A program consists of the following pieces of information:
HB Mode
HB_Deviation
Rate_Units
Reset_Output
Num_Loops
End_Segment
NextProgNum
RampRatel - RampRate8
RampDO1 - RampDO8
RampLvll - RampLvI8
DwellTimel - DwellTime8
DwellDO1 - DwellDO8

When a program is retrieved from the PC3000 File Store, all the above parameters
will be defined by the values contained in the stored file. It should be noted that a
program saved by Prog8Rate cannot be loaded by Prog8Time and vice-versa.

Any alteration of profile parameters, either over the communications link (defined
later) or by direct change from the user program will become effective
immediately if the program is in Run Mode. Great care should therefore be
exercised in ensuring that changes to program parameters are only made when no
adverse affect will occur on the plant. During ramping, if the ramp rate or the
target level are changed, the ramp will immediately be re-calculated from the
current value of Qutput utilising the new rate and target level information. During
dwelling, if the dwell time is changed, the dwell will immediately be re-calculated
- the TOTAL dwell time will be that of the new requested dwell time, and if the
new requested dwell time is less than the already elapsed dwell, the dwell will
immediately end. If target level is changed whilst dwelling, the output level will
immediately change to the new target level. However, the digital outputs will only
be updated when entering into the given ramp or dwell - if the digital output
configuration for the currently executing ramp or dwell is modified, the digital
outputs will not be correspondingly updated until that segment is re-entered.

Built in to the Prog8Rate function block are a set of Slave_Vars that can be used
to control the programmer and update programs. The current program can be
edited via a communications link and stored to the PC3000 File Store. A program
can be recalled from the File Store and set active or edited. The table 15-3 below
indicates the parameters and their addresses.

PC 3000 Function Blocks 15-19

Prog8Rate

Parameter Name Access Data Europanel Bisync JBus
Type Address Address Address
Mode Read /Write DINT MD 00 OOR1
Status Read Only DINT SS 01 01R1
Program Number Read/Write DINT PN 02 02R1
Edit Segment Number Read/Write DINT SN 03 O3R1
Edit Ramp rate Read/Write REAL RR 04 04 (R2)
Edit Ramp Digital Output Read/Write BOOL RD 05 05
8 (Bit Space)
Edit Ramp Level Read/Write REAL RL 14 14 (R2)
Edit Dwell Time Read/Write TIME DT 16 16 (R2)
Edit Dwell Digital Output Read/Write BOOL DD 18 18
8 (Bit Space)
Reset Output Read/Write REAL RO 27 27 (R2)
Start Mode Read/Write DINT SM 29 29R1
Hold Back Mode Read/Write DINT HM 30 30R1
Hold Back Deviation Read/Write REAL HD 31 31 (R2)
End Segment Number Read/Write DINT ES 33 33R1
Number of Loops Read/Write DINT NL 34 34R1
Next Program Number Read/Write DINT NP 35 35R1
Output Read Only REAL OoP 36 36 (R2)
Process Value Read Only REAL PV 38 38 (R2)
Hold Back Active Read Only BOOL HA 40 40
(Bit Space)
Current Active Segment Read Only DINT CS 41 41R1
Current Active Mode Read Only DINT CM 42 42R1
Current Time Remaining Read Only TIME CcT 43 43 (R2)
Segment Time Remaining Read Only TIME ST 45 45 (R2)
Program Time Remaining Read Only TIME PT 47 47 (R2)
Current Loops Remaining Read Only DINT LR 49 49R1
Program Name Read Only STRING NM 50 50R7
Current Digital Output Read Only STRING DO 64 64R4

Table 15-3 Addresses of Internal Slave Parameters

15-20 PC 3000 Function Blocks

Prog8Rate

The single 4 character Address input parameter is used to indicate which
communications protocol is to be used, and to form the base address of all the
internal slave variables. For example EPP1 would indicate that a Europanel was
being used to communicate with the slaves (EP), and the variables to be used in
OIFL would be prefixed with P1, e.g. PIMD, P1SS etc. Alternatively, EBO1
would indicate that communications was being carried out using the Eurotherm
Bisync Protocol (EB), and the UID is zero and the channel number is 1. In this
instance floating point format can be changed using the RealFormat input
parameter. See the PC3000 Communications Overview and related documents for
detail on setting up PC3000 communications.

To access segment data using the slave variables, the edit segment number or
CommsSegNum is used to point to the segment to be accessed, and the five
segment data parameters are used to access ramp rate, ramp digital outputs,
ramp level, dwell time, and dwell digital outputs. The read/write slave parameters
can have their write access temporarily inhibited by using the WriteInhibit
parameter.

Function Block Attributes

TYPe: oot 3F20

Class: .eeeeeeeccccciieeeeeee, PROGRAMMER

Default Task:cccccevuuneneeee. Task 2

Short List: .oovvveeeeeiennenee. Mode, Output, HB_ Active, ProgramEnd

Memory Requirements: 5676 Bytes

Parameter Descriptions

Mode (MD)

This parameter controls the operation of the function block and is also used to
transfer programs to and from the file store.

Reset(0): Output is set to the value of Reset_QOutput and digital outputs are all
cleared to Off(0). Every execution cycle the current program is
examined, and progress-reporting outputs are set to their start values -
they report the first non-null ramp or dwell, current ramp or dwell
time, current segment time, and total program run time. If no non-null
segments exist, the ProgramEnd flag will become true and the
program will be unable to run until a non-null segment is configured.

Run(1): Output is controlled according to the profile set up by RampRatel -
RampRate8, RampLvl1 - RampLvl8 and DwellTimel -
DwellTime8. This profile may be modified by the operation of hold
back. If previously in Reset Mode, QOutput will start at the first non-

PC 3000 Function Blocks 15-21

Prog8Rate

Hold(2):

Track(3):

null ramp or dwell. If the program contains all null-segments, the
program will immediately end, irrespective of the number of loops
configured.

If previously in Hold or Track mode, the function block will
immediately resume executing the current ramp or dwell. The program
will continue running until an end segment is reached and no next
program is configured, when the program end flag will become true.
When a program ends, all outputs will remain held in their state
immediately prior to ending until the program is reset. New programs
may be loaded whilst Mode is set to Run.

All outputs are frozen at their current values. The profile effectively
has an indeterminate dwell period temporarily inserted at its current
position. New programs may be loaded whilst Mode is set to Hold. A
program can be placed in Hold Mode at any time. If previously in
Reset Mode, the program will commence executing the current
program as if the mode was set to Run, but will immediately be placed
in Hold Mode.

The action of the program on Output is interrupted, and Output is
driven directly by Process_Val. When the Mode is set back to Run,
Output moves from its current value towards the ramp level of the
current segment at ramp rate of the current segment. When it reaches
the appropriate ramp level, the program resumes.

If the program is in the ramp part of a segment when Mode is changed
to Track, CurrentMode remains as Ramp, and the three time
remaining outputs are continuously updated to give the time that would
be required to ramp from the current value of Qutput to the current
segment ramp level at the ramp rate of the current segment. The digital
outputs display the states dictated by the RampDQ value for the
current segment.

If the program is in the dwell part of a segment when Mode is changed
to Track, CurrentMode returns to Ramp, and the three time remaining
outputs are continuously updated to give the time that would be
required to ramp from the current value of OQutput to the current
segment ramp level at the ramp rate of the current segment. The digital
outputs display the states dictated by the DwellDO value for the
current segment.

A program can be placed in Track Mode at any time. If previously in
Reset Mode, the program will commence executing the current
program as if the mode was set to Run, but will immediately be placed
in Track Mode.

Skip Seg(4):While in Run Mode, causes the remains of the currently running

segment to be skipped and the beginning of the next segment to start
executing.

15-22

PC 3000 Function Blocks

Prog8Rate

Skip segment can only be performed while in Run mode. If requested
in any other mode, the skip segment request will be ignored and the
previous mode resumed unaffected.

NxtUpSg(5): While in Reset Mode, will cause the program to immediately start
running. However Output immediately tracks the Process Value
input, and instead of starting at the first segment, will immediately start
executing the first segment whose target level is GREATER than
Process Value. Mode will immediately return to Run mode.

NxtDnSg(6):While in Reset mode, will cause the program to immediately start
running. However the Output immediately tracks the Process Value
input, and instead of starting at the first segment, will immediately start
executing the first segment whose target level is LESS than Process
Value. The mode will immediately return to run mode.

Load(7): Normally, this operation would only be undertaken in Reset Mode.
The current settings of the program are overwritten by the values
stored as a program in the PC3000 File Store under the name given in
ProgName. After succesfully loading the program, Mode is
automatically restored to Reset if that was the Mode when the load
operation was requested.

During loading the Mode of the current program, is immediately
changed to Hold. All outputs are held at their previous values. The
Status pin reports the progress of the load If Mode was previously
Reset, Hold or Track, then following the load, Mode will return to
Reset, Hold or Track respectively.

If Mode was Run at the start of the load operation, then following the
load the mode will always be set according to the Start_Mode of the
newly loaded program. However if the previous program had ended
(i.e. ProgramEnd is Yes prior to Load being selected), the new
program will be loaded, and on completion of the load the mode will
return to Run mode, but the program end flag will remain true, and all
outputs will remain unchanged from the values pertaining prior to the
load being requested.

While loading, any further changes to Mode will be completely
ignored - on completion of the load, the mode will be set according to
the state of Mode prior to the load request If a file of the name given
does not exist in the File Store, or if the file name does not conform to
File Store conventions, or if no File Store has been created, an error
will be shown on Status and Mode is automatically restored to Reset
without any action by the user program.

Save(8): The current settings of the program are saved into the PC3000 File
Store under the name given in ProgName and Mode is automatically
restored to its current setting without any affect on the current
program.

PC 3000 Function Blocks 15-23

Prog8Rate

If the name given does not conform to File Store conventions, or if no
File Store has been created, an error will be shown on Status. The
Status pin reports the progress of the save.

While saving, any changes to Mode will be actioned immediately - the
save will not be affected. The only exception is a load request which
will be completely ignored. If a program ends during saving and a
next program is configured, the requested next program will be ignored
and the program will immediately end as if no next program was
configured.

Address (ADR)

The first two characters of this parameter designate which communications
protocol will be used to communicate with the built-in slave variables of the
function block. The second two characters define the base address of all the slave
variables. For example, EBO1 would define the use of the Eurotherm Bisync
protocol with all slaves having a UID of zero and a channel number of one.

RealFormat (RLF)

Selects the format to be used for real numbers passed over the communications
link when using Eurotherm Bisync protocol. See description of the EIBisync Slave
function block for detail.

For use with the EuroPanel 2 function block, this parameter must be set to any
single character to ensure correct display of the digital outputs.

Writelnhibit (WI)

It is possible to protect the program parameters from being written to when being
addressed over a communications link by setting this input to Rd_Only. Program
parameters can still be read over the communications link.

Setting this parameter to Rd_WTr permits program parameters to be both written
and read over a communications link.

ProgNumber (PN)

The Prog8Rate function block retains a cross reference between 32 program
numbers and 32 associated program names. When a given ProgNumber is
selected, the program name last associated with this program number is displayed
on the ProgName input/output.

ProgName (PNM)

An input/output used to enter the name of the program associated with the current
ProgNumber. The name entered should be a valid file name for the PC3000 file
system so that programs can be loaded from or saved to the file store.

15-24 PC 3000 Function Blocks

Prog8Rate

Reset Output (ROP)

The value that will appear on the Output when the Mode is set to Reset. Whilst the
Mode remains in Reset, any change to Reset_QOutput is mirrored on Output.

Start_Mode (STM)

When a program is loaded, if Mode was Run at the start of the load operation, then
following the load the mode will be set according to the Start_Mode of the newly
loaded program. Possible values for Start_Mode are:

Reset(0): After loading the program, Mode will be set to Reset.
Run(1): After loading the program, Mode will be set to Run.

Hold(2): After loading the program, Mode will be set to Hold.
Track(3): After loading the program, Mode will be set to Track.

SkipSeg(4): After loading the program, Mode will be set to SkipSeg.
NxtUpSeg(5): After loading the program, Mode will be set to NxtUpSeg.
NxtDnSeg(6): After loading the program, Mode will be set to NxtDnSeg.

However if the previous program had ended (i.e. ProgramEnd is Yes prior to load
being selected), the new program will be loaded, and on completion of the load
Mode will return to Run, but the program end flag will remain true and all outputs
will remain unchanged from the values pertaining prior to the load being
requested.

Process Val (PV)

Normally the Process_Val of the PID loop being controlled by the Programmer
function block would be wired to this input. This gives information to the function
block that enables decisions to be taken based on the real world performance.
Output can be set to track this input, or the ramp may be temporarily stopped if
the process under control deviates from the setpoint by more than a given amount
(this is know as "holdback"). It depends on the application whether a connection is
needed to this input or not.

HB Mode (HM)

By changing this input, the way in which holdback operates can be selected.
Holdback operates during a ramp - there is no automatic hold-back during a dwell.

Off(0): No holdback is in operation.

Lower(1): When HB_Mode is set to Lower, holdback will become active if
Process_Val is less than or equal to Output minus the HB_Deviation.
In other words, the QOutput will stop at its current position until
Process_Val increases. The output HB_Active will also be true under
these circumstances. This mode is usually used in cases where there is

PC 3000 Function Blocks 15-25

Prog8Rate

danger of the setpoint (i.e. the Output of the programmer function
block) getting ahead of the process on rising ramps.

Upper(2): When HB_Mode is set to Upper, holdback will become active if
Process_Val is greater than or equal to Output plus the
HB_Deviation. In other words, the Output will stop at its current
position until Process_Val decreases. The output HB_Active will also
be true under these circumstances. This mode is usually used in cases
where there is danger of the setpoint (i.e. the Output of the programmer
function block) getting ahead of the process on falling ramps.

Band(3): If the absolute difference between Process_Val and Output is greater
than or equal to HB_Deviation, holdback will become active if
HB_Mode is set to Band. In other words, the Output will stop at its
current position until this condition is no longer true. The output
HB_Active will also be true under these circumstances. This mode is
used to protect the process from lagging too far behind the setpoint (i.e.
the Output of the programmer function block) on both rising and
falling ramps.

HB Deviation (HD)
Used in conjunction with Process_Val and Output to determine whether holdback

should become active, depending on the setting of HB_Mode. It defines limits
relative to Output within which Process_Val is expected to remain.

Rate Units (RU)

This input is used to interpret the settings of RampRatel to RampRate8 as being
either in output units per second, per minute, per hour or per day. All segments
must use the same Rate_Units.

End Segment (ES)

The last segment to be considered as part of the profile. This allows a profile to be
brought to an end before all non-null segments have been executed. A change
made to this parameter whilst a program is running will become effective if the
segment made to be the end segment has not yet completed executing.

Num_Loops (NL)

The number of times the current profile will be repeated before passing to the next
program or flagging that the program has ended if NextProgNum is None.

NextProgNum (NPN)

This input allows a new program to be loaded from the file store once the the
current program has completed.

None(0): No program will be loaded when the current program completes.

15-26 PC 3000 Function Blocks

Prog8Rate

Prog_1(1): The program whose name is given as ProgName when
ProgNumber=1 will be loaded from the PC3000 File Store when the
current program completes. If there is no ProgName associated with
ProgNumber=1 then the ProgStatus will show LoadErr and Mode
will go to Reset.

Prog_2(2): The program whose name is given as ProgName when
ProgNumber=2 will be loaded from the PC3000 File Store when the
current program completes. If there is no ProgName associated with
ProgNumber=2 then the ProgStatus will show LoadErr and Mode
will go to Reset.

etc up to
Prog_32 (32)

RampRate1 (RR1)

The rate at which Output will move from its current value to the ramp level of
segment 1 in Output units per Rate_Units.

RampDO1 (RD1)

This gives the possibility of setting each of the eight digital outputs of the
Prog8Rate function block to a particular state during the ramp of segment 1. The
value of this variable is interpreted as an eight bit pattern, the lowest bit setting
Dig_Out_1, and the highest bit setting Dig_Out_8.

RamplLvl1 (RL1)

The level of Output which, when achieved, will cause the dwell of segment 1 to
commence.

DwellTime1 (DTT)

The length of time for which the Qutput will remain static at RampLvl1 after the
ramp part of segment 1 is completed.

DwellDO1 (DD1)

This gives the possibility of setting each of the eight digital outputs of the
Prog8Rate function block to a particular state during the dwell of segment 1. The
value of this variable is interpreted as an eight bit pattern, the lowest bit setting
Dig_Out_1, and the highest bit setting Dig_Out_8.

RampRate2 (RR2)

The rate at which Output will move from its current value to the ramp level of
segment 2 in Output units per Rate_Units.

PC 3000 Function Blocks 15-27

Prog8Rate

RampDO2 (RD2)

This gives the possibility of setting each of the eight digital outputs of the
Prog8Rate function block to a particular state during the ramp of segment 2. The
value of this variable is interpreted as an eight bit pattern, the lowest bit setting
Dig Out_1, and the highest bit setting Dig_Out_8.

Ramplvl2 (RL2)

The level of Output which, when achieved, will cause the dwell of segment 2 to
commence.

DwellTime2 (DT2)

The length of time for which the Qutput will remain static at RampLvI2 after the
ramp part of segment 2 is completed.

DwellDO2 (DD2)

This gives the possibility of setting each of the eight digital outputs of the
Prog8Rate function block to a particular state during the dwell of segment 2. The
value of this variable is interpreted as an eight bit pattern, the lowest bit setting
Dig_Out_1, and the highest bit setting Dig_Out_8.

etc up to

DwellDOS8 (DD8)

CommsSegNum
Defines which Ramp, Level Dwell parameter set the communications mnemonics
are pointing to.

See Edit Segment Number in Table 15-3.

Output (OP)

The current value of the profile being produced by the program now running. This
Output would normally be wired to the Setpoint input of a PID loop or used in
some other way as a setpoint for control action.

HB_Active (HA)

If HB_Active is true this indicates that the value currently being fed to the
Process_Val input deviates from the current value of Qutput by more than the
amount defined by HB_Mode and HB_Deviation.

15-28 PC 3000 Function Blocks

Prog8Rate

ProgramEnd (PE)

This output indicates when the current program has ended, or where multiple
programs are chained together using NextProgNum, when the last program in a
chain has ended.

Status (SS)

The success or otherwise of the last file operation to or from the PC3000 File Store
is indicated by this output, or, during a file operation, the operation in progress is
indicated.

Ok(0): The last file store operation was succesful, either save or load.
Saving(1): A save operation is in progress to the file store .
Loading(2):A load operation is in progress from the file store.

SaveErr(3): The last save to file store operation failed. This could be for a variety
of reasons, such as no file store exists, the file store is full or the file
name specified in the ProgName parameter is invalid.

LoadErr(4): The last load from file store operation failed. This could be for a
variety of reasons, such as no file store exists or the file name specified
in the ProgName parameter is invalid or is not a recipe file. This error
will also be reported if a program saved by a Prog8Time function
block is loaded.

LoopsRemain (LR)

The number of loops (repeats) of the current program that have yet to be run once
the current loop is completed.

CurrentSeg (CS)

The number of the segment of the current program currently being executed. This
could either be the ramp or dwell part of the segment.

CurrentMode (CM)

This indicates whether the Ramp part or the Dwell part of the current segment is
being executed. Normally the ramp part of a segent is followed by the dwell, and
then the next segment begins to execute.

However, if Mode is set to Track when the dwell has already commenced, the
CurrentMode will revert to Ramp. When Mode is set to Run again, the Output
will ramp to the current segment RampLvl value at the current segment
RampRate and then CurrentMode will again indicate Dwell. This second dwell
period will last for the full DwellTime of the current segment.

PC 3000 Function Blocks 15-29

Prog8Rate

CurrentTmRem (CTR)

The time that will be required to complete the operation indicated by
CurrentMode (i.e. a ramp or dwell) assuming their are no interruptions caused
by hold back becoming active, or due to Mode being other than Run.

The calculations are based on the current value of Qutput and the profile
parameters for the current segment.

If hold back becomes active, or Mode is changed, CurrentTmRem indicates the
time required to complete the operation indicated by CurrentMode if hold back
were to become immediately inactive, or Mode were to be immediately changed
to Run.

SegTmRem (STR)

The time that will be required to complete the current segment assuming their are
no interruptions caused by hold back becoming active, or due to Mode being other
than Run. The calculations are based on the current value of Qutput and the
profile parameters for the current segment.

If hold back becomes active, or Mode is changed, SegTmRem indicates the time
required to complete the current segment if hold back were to become immediately
inactive, or Mode were to be immediately changed to Run.

ProgTmRem (PTR)

The time that will be required to complete the remaining number of loops of the
current profile assuming their are no interruptions caused by hold back becoming
active, or due to Mode being other than Run. The calculations are based on the
current value of Qutput and the profile parameters for the current segment
together with the Num_JLoops parameter.

If hold back becomes active, or Mode is changed, ProgTmRem indicates the time
required to complete the current segment if hold back were to become immediately
inactive, or Mode were to be immediately changed to Run.

When Mode is set to Run and changes are made to program parameters,
ProgTmRem will only be recalculated at the start of the next segment or at the
changeover from a ramp to a dwell.

Dig Out 1 (DO1)

A digital output which is driven by bit O of the RampDO and DwellDO
input/outputs of the current segment. For example, if bit 0 of RampDQO4 is 1 and
bit 0 of DwellDO4 is 0, then during the ramp in segment 4 Dig_Out_1 will be
switched on, and during the dwell in segment 4 Dig Out_1 will be switched off.

Dig_Out 2 (DO2)

A digital output which is driven by bit 1 of the RampDO and DwellDO
input/outputs of the current segment. For example, if bit 1 of RampDO4 is 1 and

15-30

PC 3000 Function Blocks

Prog8Rate

bit 1 of DwellDOA4 is 0, then during the ramp in segment 4 Dig_QOut_2 will be
switched on, and during the dwell in segment 4 Dig_QOut_2 will be switched off.

Dig Out 3 (DO3)
A digital output which is driven by bit 2 of the RampDO and DwellDO
input/outputs of the current segment. For example, if bit 2 of RampDO4 is 1 and
bit 2 of DwellDO4 is 0, then during the ramp in segment 4 Dig_Out_3 will be
switched on, and during the dwell in segment 4 Dig_QOut_3 will be switched off.

Dig_Out 4 (DOA4)

A digital output which is driven by bit 3 of the RampDQO and DwellDO
input/outputs of the current segment. For example, if bit 3 of RampDO4 is 1 and
bit 3 of DwellDO4 is O, then during the ramp in segment 4 Dig_Out_4 will be
switched on, and during the dwell in segment 4 Dig_Out_4 will be switched off.

Dig_Out 5 (DO5)

A digital output which is driven by bit 4 of the RampDO and DwellDO
input/outputs of the current segment. For example, if bit 4 of RampDO4 is 1 and
bit 4 of DwellDO4 is 0, then during the ramp in segment 4 Dig_Out_5 will be
switched on, and during the dwell in segment 4 Dig_QOut_5 will be switched off.

Dig_Out 6 (DO6)
A digital output which is driven by bit 5 of the RampDO and DwellDO
input/outputs of the current segment. For example, if bit 5 of RampDO4 is 1 and

bit 5 of DwellDO4 is O, then during the ramp in segment 4 Dig_Out_6 will be
switched on, and during the dwell in segment 4 Dig_QOut_6 will be switched off.

Dig_Out 7 (DO7)
A digital output which is driven by bit 6 of the RampDO and DwellDO
input/outputs of the current segment. For example, if bit 6 of RampDO4 is 1 and
bit 6 of DwellDO4 is 0, then during the ramp in segment 4 Dig_Out_7 will be
switched on, and during the dwell in segment 4 Dig_QOut_7 will be switched off.

Dig Out 8 (DO8)
A digital output which is driven by bit 7 of the RampDO and DwellDO
input/outputs of the current segment. For example, if bit 7 of RampDQO4 is 1 and
bit 7 of DwellDO4 is 0, then during the ramp in segment 4 Dig_Out_8 will be
switched on, and during the dwell in segment 4 Dig_QOut_8 will be switched off.

PC 3000 Function Blocks 15-31

Prog8Rate

Parameter Atiributes

Name Type |Cold Start | Read | Write Type Specific Information
Access | Access
Mode ENUM Reset (0) Oper Oper See parameter list
Address STR 'EPPT' Super Super |Max 4 characters
RealFormat STR " Super Super |Single character
Writelnhibit BOOL Rd_Wr(0) Super Super Senses Rd-Wr (0)
Rd_Only (1)
ProgNumber DINT 1 Oper Oper High Limit |32
Low Limit 1
ProgName STR " Oper Oper Max 12 characters
Reset Output REAL 0 Super Super High Limit |+3.402823E+38
Low Limit |-3.402823E+38
Start_Mode ENUM Run (1) Oper Oper See parameter list
Process_Val REAL 0 Oper Oper High Limit |+3.402823E+38
Low Limit |-3.402823E+38
HB Mode ENUM Off (0) Oper Oper See parameter list
HB_Deviation REAL 0 Oper Oper See parameter list
Rate_Units ENUM /Second (0) |Super Super See parameter list
End_Segment DINT 8 Super Super |High Limit |8
Low Limit 1
Num_Loops DINT 1 Super Super |High Limit |999
Low Limit |0
NextProgNum |ENUM None(0) Super Super |See parameter list
RampRatel -to |REAL 0 Super Super High Limit |+3.402823E+38
RampRate8 Low Limit |-3.402823E+38
RampDO1 to DINT 0 Super Super High Limit |256
RampDO8 Low Limit |0
RamplLv11 to REAL 0 Super Super High Limit |+3.402823E+38
RamplLv18 Low Limit |-3.402823E+38
DwellTimel to | TIME Oms Super Super |High Limit |23d23h59m59s999ms
DwellTime8 Low Limit |Oms
DwellDO1-to DINT 0 Super Super High Limit |256
DwellDO8 Low Limit |0
CommsSegNum | DINT 1 Super Super High Limit |8
Low Limit 1

Table 15-4 Prog8Rate Parameter Attributes (continued)

15-32

P

C 3000 Function Blocks

Prog8Rate

Name Type |Cold Start | Read | Write Type Specific Information
Access | Access

Output REAL 0 Oper Block High Limit |+3.402823E438
Low Limit |-3.402823E+38
HB_Active BOOL No(0) Oper Block Senses No(0)
Yes(1)
ProgramEnd BOOL Yes(1) Oper Block Senses No(0)
Yes(1)
Status ENUM Ok(0) Oper Block See parameter list
LoopsRemain DINT 0 Oper Block High Limit |999
Low Limit |0
CurrentSeg DINT 8 Oper Block High Limit |8
Low Limit 1
CurrentMode BOOL Dwell(1) Oper Block Senses Ramp(0)
Dwell(1)
CurrentTmRem | TIME Oms Oper Block High Limit |23d23h59m595999ms
Low Limit |Osms
SegTmRem TIME Oms Oper Block High Limit |23d23h59m595999ms
Low Limit |Oms
ProgTmRem TIME Oms Oper Block High Limit |23d23h59m595999ms
Low Limit |Oms
Dig Out 1 -to |BOOL Off(0) Oper Block Senses Off(0)
Dig_Out 8 On(1)

Table 15-4 Prog8Rate Parameter Attributes

PC 3000 Function Blocks 15-33

Prog8Time

PROGSTIME FUNCTION BLOCK

Prog8Time -
ENUM _I: Mode Mode g ENUM
STR _I: Address Output REAL
STR _I: RealFormat HB Active BOOL
BOOL _I: WriteInhibit ProgramEnd BOOL
DINT _|: ProgNumber ProgNumber DINT
STR _|: ProgName ProgName STR
REAL _|: Reset_Output Reset_Output REAL
ENUM _|: Start_Mode Start_Mode ENUM
REAL —I: Process_Val Status ENUM
svou — | HB_Mode HB_Mode ENUM
REAL —I: HB Deviation HB Deviation REAL
DINT —I: End_Segment End_Segment DINT
DINT —I: Num_Loops Num_Loops DINT
ENUM —I: Next ProgNum Next ProgNum ENUM
REAL — | RampTimel RampTimel REAL
BOOL —|: RampDO1 RampDO1 DINT
pINT — | RampLvll RampLvll REAL
TIME —|: DwellTimel DwellTimel TIME
DINT —|: DwellDO1 DwellDO1 DINT
REAL —|: RampTime?2 RampTime?2 REAL
DINT _|_ RampDO2 RarpDO2 DINT

Figure 15-8 Prog8Time Function Block Diagram

15-34 PC 3000 Function Blocks

Prog8Time

REAL —|: RampLv12 RanplLvl2 REAL
TIME —I: DwellTime2 DwellTime2 B TIME
prnt — | DwellDO2 DwellDO2 DINT
REAL _|: RampTime3 RanpTime3 REAL
pINT — | RampDO3 RarpDO3 DINT
Ak 1 Ramprvi3 RampLv13 REAL
rims —__| pwellTime3 DwellTime3 TIME
oot — | pye11po3 DwellDO3 DINT
REAL _|: RampTime4 RampTime4 REAL
PINT _|: RampD0O4 RampDO4 DINT
real — 1 paprvid Rampliv14 REAL
TIME _|: DwellTime4d DwellTime4 TIME
DINT _|: DwellD0O4 Dwel1D0O4 DINT
real — | RampTimes RampTime5 REAL
pint — | RampDOS RampDO5 DINT
REal — | RampLvl5 RampLv15 REAL
TIME —|: DwellTime5 DwellTime5 TIME
pint —{ | DwellDOS DwellDO5 DINT
REAL _|: RampTime6 RanpTime6 REAL
DINT _|: RampDO6 RampDO6 DINT
rea, —| | RampLvlé Rampliv16 REAL
rime —[| DwellTime6 DwellTime6 TIME

Figure 15-8 Prog8Time Function Block Diagram (continued)

PC 3000 Function Blocks

15-35

Prog8Time

DINT

REAL

DINT

REAL

TIME

DINT

REAL

DINT

REAL

TIME

DINT

DINT

alalalalalalalalaiutals

DwellDO6
RampTime7
RampDO7
RampLwvl1l1l7
DwellTime7
DwellDO7
RampTime8
RampDO8
RampLvl118
DwellTime8

DwellDOS8

Comms SegNum

\/DwellDO6

RampTime7
RampDO7
RampLv117
DwellTime7
Dwel1DO7
RampTime8
RampDO8
RampLvl118
DwellTime8
DwellDO8
LoopsRemain
CurrentSeg
CurrentMode
CurrentTmRem
SegTmRem
ProgTmRem
Dig Out_1
Dig Out_2
Dig Out_3
Dig Out_4
Dig Out_5
Dig Out_6
Dig Out_7

Dig Out_S8

DINT

REAL

DINT

REAL

TIME

DINT

REAL

DINT

REAL

TIME

DINT

DINT

DINT

BOOL

TIME

TIME

TIME

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

Figure 15-8 Prog8Time Function Block Diagram

15-36

PC 3000 Function Blocks

Prog8Time

Functional Description

Segment

No

The Prog8Time function block produces an Output that can be used as a setpoint
profile to drive a control loop. By profile we mean a pre-defined variation of the
setpoint as a function of time. This is similar to facilities provided by the
Eurotherm 818/902 multiprogrammer instruments.

It is possible to store profiles (with certain other related settings) as named
programs in the PC3000 file store system.

A profile consists of up to eight segments - the number of segments in use in any
given profile is specified by the input End_Segment. Each segment would
normally be defined as a ramp followed by a dwell period, as in segments 1, 2, 3
and 8 of diagram 15-9 below.

Output

A ;

Figure 15-9 Setpoint Profile: Prog8Rate.Output as a function of Time

A segment can also be defined as only a ramp, as in segments 4 and 5 above,
meaning that the next segment starts as soon as the ramp finishes. This allows
peaks or changes of gradient to be created within a profile.

Alternatively, a segment may only be a dwell period, meaning any change in level
of output is achieved as a step change. See segments 6 and 7 above.

A program will always start with segment 1 unless the parameter Start. Mode
dictates otherwise. See later for more detail on this. The program will then proceed

PC 3000 Function Blocks 15-37

Prog8Time

sequentially through each segment until the last configured segment is reached, or
the eighth segment is reached. The current segment number and its mode (ramp or
dwell) is reported.

The starting value of Output can be preset by means of the input Reset_QOutput.
Whenever the Mode input is set to Reset, the Qutput will be set to Reset_QOutput.
A segment starts from the current value of Output (see figure 15-11) and it may
therefore be necessary to set mode to Reset and then back to Run in order that the
first segment starts from a known position.

With the Prog8Time function block, each ramp segment of a profile is specified
by means of the time to complete the ramp (RampTimel to RampTime8) and the
target setpoint (RampLvll to RampLvl8).

A profile may be repeated up to 999 times. A profile will always repeat by
jumping from the configured last segment (or the eighth segment) back to segment
1. The current number of loops remaining (excluding the currently running loop)
will always be reported. This means that when the segment indicated by
End_Segment is completed, the Qutput will then be driven from its current
position towards RampLvl1 in the time specified by RampTimel. In order to
repeat a profile exactly therefore, the value of RampLvI8 must be the same as the
start value of Output.

A ramp time of zero will be interpreted as a step or null ramp - the output will
instantly be set to the target level. A dwell time of zero seconds will be interpreted
as a null dwell. No time is required to execute a null ramp or a null dwell.

A segment will be completely skipped (or ignored) if a step (null ramp) and a null
dwell are configured within that same segment. The outputs will not be affected in
any way by a skipped segment.

15-38

PC 3000 Function Blocks

Prog8Time

Normal Ramp/Dwell sequence

D
R
o
Segment No | |
A A step can be achieved by setting
D the ramp time in segment n + 1
o zero.
D
R :
: o
Segment No | n \ n+ 1 |
A : Two consecutive ramps can be
! achieved by setting the dwell time
; in segment n to zero.
' R
R | D
: >
Segment No | n | n+1 |

There are no limits to the number of consecutive skipped segments, null ramps or
null dwells. On completion of the previous non-null ramp or dwell, the
programmer will immediately skip the null ramp(s) and null dwell(s) and proceed
to execute the next non-null ramp or dwell, ignoring all null segments. If all eight
segments are null, the program will immediately end irrespective of the number of
loops remaining.

PC 3000 Function Blocks 15-39

Prog8Time

On completion of a profile (including any repeats), the ProgramEnd flag will
become true. When a program ends, the states of all outputs will remain in the
same state that they were in immediately prior to ending, until the programmer is
reset.

A program can be cut short by setting the last segment that will executed by means
of the End_Segment parameter. The default end segment will be segment 8. Any
segments following the specified end segment will always be ignored - for
example, if the End_Segment is 3, then segments 4-8 will be ignored and the
program will end once segment 3 is completed. If repeats are configured the
program will always repeat by returning to segment 1 from segment 3.

Concatenation of programs is possible using the NextProgNum parameter. On
completion of the current program (i.e. when ProgramEnd becomes true), if the
NextProgNum parameter is non-zero, the programmer will automatically be set to
HOLD, the program corresponding to the program number given by the
NextProgNum parameter will be loaded, and once loaded, the new program will
be set to run according to the Start_Mode of the new program.

A list of program names can be set up using the ProgName and ProgNumber
parameters.

To make the creation of standard "PID with programmer" type of control
straightforward, holdback action is a built-in option of the Prog8Rate function
block. This means that the QOutput of the Prog8Rate can be prevented from
deviating by more than a preset amount from the current measurement of the
physical variable being controlled. This latter value is fed back to the programmer
through the input Process_Val.. Three modes of holdback are supported, and
holdback can be configured using the HB_Mode and HB_Deviation parameters.

A set of eight digital outputs are provided. The state of each of these outputs may
be individually programmed for each ramp and dwell of each segment of a profile.
Their states form part of the program. The digital outputs are only updated on
Starting a non-null (i.e. non zero) ramp or dwell, and are not affected by null ramp
or dwell segments.

Outputs are provided to indicate the current program state, including time
progress indicators for the current segment and the total program (including
repeats), and an indication of the number of repeats remaining.

If any parameter changes, then all the times remaining except program time
remaining will be immediately re-calculated and updated to the new time.Program
time remaining is only re-calculated during reset, hold, track, or during a change of
segment (including when going from a ramp to a dwell).

As well as being used to control the operation of the current program, the Mode
parameter may be used to save and retrieve programs from the PC3000 file store.
Programs are handled as text files. Each program is saved and loaded by its name:
names are case sensitive, and consist of up to 8 characters, a full stop then a 3
character extension. This is very similar to the standard MSDOS filename system.
To avoid unneccessay CPU loading, the loading and saving of programs is spread
over some 50 execution cycles, resulting in a typical delay of 5 seconds before a

15-40

PC 3000 Function Blocks

Prog8Time

program is completely loaded (assuming a 100ms task rate). The Status output
will report the progress of save or load operations.

A program consists of the following pieces of information:
HB Mode
HB_Deviation
Rate_Units
Num_Loops
End_Segment
NextProgNum
RampTimel - RampTime8
RampDO1 - RampDO8
RampLvll - RampLvI8
DwellTimel - DwellTime8
DwellDO1 - DwellDO8

When a program is retrieved from the PC3000 File Store, all the above parameters
will be defined by the values contained in the stored file. It should be noted that a
program saved by Prog8Rate cannot be loaded by Prog8Time and vice-versa.

Any alteration of profile parameters, either over the communications link (defined
later) or by direct change from the user program will become effective
immediately if the program is in Run Mode. Great care should therefore be
exercised in ensuring that changes to program parameters are only made when no
adverse affect will occur on the plant. During ramping, if the ramp time or the
target level are changed, the ramp will immediately be re-calculated from the
current value of Output utilising the new ramp time and target level information.
During dwelling, if the dwell time is changed, the dwell will be re-calculated
immediately - the TOTAL dwell time will be that of the new requested dwell time,
and if the new requested dwell time is less than the already elapsed dwell, the
dwell will immediately end. If target level is changed whilst dwelling, the output
level will immediately change to the new target level. However, the digital outputs
will only be updated when entering into the given ramp or dwell - if the digital
output configuration for the currently executing ramp or dwell is modified, the
digital outputs will not be correspondingly updated until that segment is re-
entered.

Built in to the Prog8Time function block are a set of Slave_Vars that can be used
to control the programmer and update programs. The current program can be
edited via a communications link and stored to the PC3000 File Store. A program
can be recalled from the File Store and set active or edited. The table below
indicates the parameters and their addresses.

PC 3000 Function Blocks 15-41

Prog8Time

Parameter Name Access Data Europane Bisync JBUS
Type I Address Address Address
Mode Read /Write DINT MD 00 OOR1
Status Read Only DINT SS 01 01R1
Program Number Read/Write DINT PN 02 02R1
Edit Segment Number Read/Write DINT SN 03 O3R1
Edit Ramp Time Read/Write TIME RT 04 04 (R2)
Edit Ramp Digital Output | Read/Write BOOL 8 RD 05 05 (Bit
Space)
Edit Ramp Level Read/Write REAL RL 14 14 (R2)
Edit Dwell Time Read/Write TIME DT 16 16 (R2)
Edit Dwell Digital Output Read/Write BOOL 8 DD 18 18 (Bit
Space)
Reset Output Read/Write REAL RO 27 27 (R2)
Start Mode Read/Write DINT SM 29 29R1
Hold Back Mode Read/Write DINT HM 30 30R1
Hold Back Deviation Read/Write REAL HD 31 31 (R2)
End Segment Number Read/Write DINT ES 33 33R1
Number of Loops Read/Write DINT NL 34 34R1
Next Program Number Read/Write DINT NP 35 35R1
Output Read Only REAL OoP 36 36 (R2)
Process Value Read Only REAL PV 38 38 (R2)
Hold Back Active Read Only BOOL HA 40 40 (Bit
Space)
Current Active Segment Read Only DINT CS 41 41R1
Current Active Mode Read Only DINT CM 42 42R1
Current Time Remaining Read Only TIME o) 43 43 (R2)
Segment Time Remaining | Read Only TIME ST 45 45 (R2)
Program Time Remaining | Read Only TIME PT 47 47 (R2)
Current Loops Remaining | Read Only DINT LR 49 49R1
Program Name Read Only STRING NM 50 50R7
Current Digital Output Read Only STRING DO 64 64R4

Table 15-5 Addresses of Internal Slave Parameters

15-42 PC 3000 Function Blocks

Prog8Time

The single 4 character Address input parameter is used to indicate which
communications protocol is to be used, and to form the base address of all the
internal slave variables. For example EPP1 would indicate that a Europanel was
being used to communicate with the slaves (EP), and the variables to be used in
OIFL would be prefixed with P1, e.g. PIMD, P1SS etc. Alternatively, EBO1
would indicate that communications was being carried out using the Eurotherm
Bisync Protocol (EB), and the UID is zero and the channel number is 1. In this
instance floating point format can be changed using the RealFormat input
parameter. See the PC3000 Communications Overview and related documents for
detail on setting up PC3000 communications.

To access segment data using the slave variables, the edit segment number or
CommsSegNum is used to point to the segment to be accessed, and the five
segment data parameters are used to access ramp rate, ramp digital outputs, ramp
level, dwell time, and dwell digital outputs. The read/write slave parameters can
have their write access temporarily inhibited by using the WriteInhibit
parameter.

Function Block Attributes

TYPE: wevieeieeereeee e, 3F22

Class: coooeveeeerrrenreeesreeeeens PROGRAMMER

Default Task:ccoevvvvunennenee Task 2

Short List: .ccovvvveeevivnnenene. Mode, Output, HB_Active, ProgramEnd

Memory Requirements: 5640 Bytes

Parameter Descriptions

Mode (MD)

This parameter controls the operation of the function block and is also used to
transfer programs to and from the file store.

Reset(0): Output is set to the value of Reset_Qutput and digital outputs are all
cleared of Off(0). Every execution cycle the current program is
examined, and progress-reporting outputs are set to their start values -
they report the first non-null ramp or dwell, current ramp or dwell
time, current segment time, and total program run time. If no non-null
segments exist, the ProgramEnd flag will become true and the program
will be unable to run until a non-null segment is configured.

Run(1): Output is controlled according to the profile set up by RampTimel -
RampTime8, RampLvll - RampLvI8 and DwellTimel -

PC 3000 Function Blocks 15-43

Prog8Time

Hold(2):

Track(3):

DwellTime8. This profile may be modified by the operation of hold
back.

If previously in Reset Mode, Output will start at the first non-null
ramp or dwell. If the program contains all null-segments, the program
will immediately end, irrespective of the number of loops configured.

If previously in Hold or Track mode, the function block will
immediately resume executing the current ramp or dwell.

The program will continue running until an end segment is reached and
no next program is configured, when the program end flag will become
true. When a program ends, all outputs will remain held in their state
immediately prior to ending until the program is reset.

New programs may be loaded whilst Mode is set to Run.

All outputs are frozen at their current values. The profile effectively
has an indeterminate dwell period temporarily inserted at its current
position.

New programs may be loaded whilst Mode is set to Hold.

A program can be placed in Hold Mode at any time. If previously in
Reset Mode, the program will commence executing the current
program as if the mode was set to Run, but will immediately be placed
in Hold Mode.

The action of the program on Qutput is interrupted, and Qutput is
driven directly by Process_Val. When the Mode is set back to Run,
Output moves from its current value towards the ramp level of the
current segment in the ramp time of the current segment. When it
reaches the appropriate ramp level, the program resumes.

If the program is in the ramp part of a segment when Mode is changed
to Track, CurrentMode remains as Ramp, and the three time remaining
outputs are continuously updated to give the time that would be
required to ramp from the current value of Output to the current
segment ramp level in the ramp time of the current segment. The
digital outputs display the states dictated by the RampDQ value for
the current segment.

If the program is in the dwell part of a segment when Mode is changed
to Track, CurrentMode returns to Ramp, and the three time remaining
outputs are continuously updated to give the time that would be
required to ramp from the current value of Output to the current
segment ramp level in the ramp time of the current segment. The
digital outputs display the states dictated by the DwellDO value for the
current segment.

A program can be placed in Track Mode at any time. If previously in
Reset Mode, the program will commence executing the current
program as if the mode was set to Run, but will immediately be placed
in Track Mode.

15-44

PC 3000 Function Blocks

Prog8Time

Skip Seg(4):While in Run Mode, causes the remains of the currently running
segment to be skipped and the beginning of the next segment to start
executing.

Skip segment can only be performed while in Run mode. If requested
in any other mode, the skip segment request will be ignored and the
previous mode resumed unaffected.

NxtUpSg(5): While in Reset mode, will cause the program to immediately start
running. However Output immediately tracks the Process Value
input, and instead of starting at the first segment, will immediately start
executing the first segment whose target level is GREATER than
Process Value Mode will immediately return to Run mode.

NxtDnSg(6):While in Reset mode, will cause the program to immediately start
running. However the Output immediately tracks the Process Value
input, and instead of starting at the first segment, will immediately
start executing the first segment whose target level is LESS than
Process Value. The mode will immediately return to Run mode.

Load(7): Normally, this operation would only be undertaken in Reset Mode.
The current settings of the program are overwritten by the values
stored as a program in the PC3000 File Store under the name given in
ProgName. After succesfully loading the program, Mode is
automatically restored to Reset if that was the Mode when the load
operation was requested.

During loading the Mode of the current program, is immediately
changed to Hold. All outputs are held at their previous values. The
Status pin reports the progress of the load.

If Mode was previously Reset, Hold or Track, then following the
load, Mode will return to Reset, Hold or Track respectively.

If Mode was Run at the start of the load operation, then following the
load the mode will always be set according to the Start_Mode of the
newly loaded program. However if the previous program had ended
(i.e. ProgramEnd is Yes prior to Load being selected), the new
program will be loaded, and on completion of the load the mode will
return to Run Mode, but the program end flag will remain true, and all
outputs will remain unchanged from the values pertaining prior to the
load being requested.

While loading, any further changes to Mode will be completely
ignored - on completion of the load, the mode will be set according to
the state of Mode prior to the load request.

If a file of the name given does not exist in the File Store, or if the file
name does not conform to File Store conventions, or if no File Store
has been created, an error will be shown on Status and Mode is
automatically restored to Reset without any action by the user
program.

PC 3000 Function Blocks 15-45

Prog8Time

Save(8): The current settings of the program are saved into the PC3000 File
Store under the name given in ProgName and Mode is automatically
restored to its current setting without any affect on the current
program.

If the name given does not conform to File Store conventions, or if no
File Store has been created, an error will be shown on Status. The
Status pin reports the progress of the save.

While saving, any changes to Mode will be actioned immediately - the
save will not be affected. The only exception is a load request which
will be completely ignored. If a program ends during saving and a
next program is configured, the requested next program will be ignored
and the program will immediately end as if no next program was
configured.

Address (ADR)

The first two characters of this parameter designate which communications
protocol will be used to communicate with the built-in slave variables of the
function block. The second two characters define the base address of all the slave
variables. For example, EBO1 would define the use of the Eurotherm Bisync
protocol with all slaves having a UID of zero and a channel number of one.

RealFormat(RLF)

Selects the format to be used for real numbers passed over the communications
link when using Eurotherm Bisync protocol. See description of the EIBisync Slave
function block for detail.

For use with the EuroPanel 2 function block this parameter must be set to any
single character to ensure correct display of the digital outputs.

Writelnhibit (WI)

It is possible to protect the program parameters from being written to when being
addressed over a communications link by setting this input to Rd_Only. Program
parameters can still be read over the communications link.

Setting this parameter to Rd_Wr permits program parameters to be both written
and read over a communications link.

ProgNumber (PN)

The Prog8Rate function block retains a cross reference between 32 program
numbers and 32 associated program names. When a given ProgNumber is
selected, the program name last associated with this program number is displayed
on the ProgName input/output.

15-46

PC 3000 Function Blocks

Prog8Time

ProgName (PNM)

An input/output used to enter the name of the program associated with the current
ProgNumber. The name entered should be a valid file name for the PC3000 file
system so that programs can be loaded from or saved to the file store.

Reset Output (ROP)

The value that will appear on the Qutput when the Mode is set to Reset. Whilst
the Mode remains in Reset, any change to Reset_QOutput is mirrored on OQutput.

Start_Mode (STM)

When a program is loaded, if Mode was Run at the start of the load operation,
then following the load the mode will be set according to the Start_Mode of the
newly loaded program. Possible values for Start_Mode are:

Reset(0): After loading the program, Mode will be set to Reset.
Run(1): After loading the program, Mode will be set to Run.

Hold(2): After loading the program, Mode will be set to Hold.
Track(3): After loading the program, Mode will be set to Track.
SkipSeg(4): After loading the program, Mode will be set to SkipSeg.
NxtUpSeg(5): After loading the program, Mode will be set to NxtUpSeg.
NxtDnSeg(6): After loading the program, Mode will be set to NxtDnSeg.

However if the previous program had ended (i.e. ProgramEnd is Yes prior to load
being selected), the new program will be loaded, and on completion of the load
Mode will return to Run, but the program end flag will remain true and all outputs
will remain unchanged from the values pertaining prior to the load being
requested.

Process Val (PV)

Normally the Process_Val of the PID loop being controlled by the Programmer
function block would be wired to this input. This gives information to the function
block that enables decisions to be taken based on the real world performance.
Output can be set to track this input, or the ramp may be temporarily stopped if
the process under control deviates from the setpoint by more than a given amount
(this is know as "holdback"). It depends on the application whether a connection is
needed to this input or not.

HB Mode (HM)

By changing this input, the way in which holdback operates can be selected.
Holdback operates during a ramp - there is no automatic hold-back during a dwell.

Off(0): No holdback is in operation.

PC 3000 Function Blocks 15-47

Prog8Time

Lower(1):

Upper(2):

Band(3):

When HB_Mode is set to Lower, holdback will become active if
Process_Val is less than or equal to QOutput minus the HB_Deviation.
In other words, the Output will stop at its current position until
Process_Val increases. The output HB_Active will also be true under
these circumstances. This mode is usually used in cases where there is
danger of the setpoint (i.e. the Output of the programmer function
block) getting ahead of the process on rising ramps.

When HB_Mode is set to Upper, holdback will become active if
Process_Val is greater than or equal to Output plus the
HB_Deviation. In other words, the Qutput will stop at its current
position until Process_Val decreases. The output HB_Active will also
be true under these circumstances. This mode is usually used in cases
where there is danger of the setpoint (i.e. the Qutput of the
programmer function block) getting ahead of the process on falling
ramps.

If the absolute difference between Process_Val and Output is greater
than or equal to HB_Deviation, holdback will become active if
HB_Mode is set to Band. In other words, the Output will stop at its
current position until this condition is no longer true. The output
HB_Active will also be true under these circumstances. This mode is
used to protect the process from lagging too far behind the setpoint
(i.e. the Output of the programmer function block) on both rising and
falling ramps.

HB Deviation (HD)
Used in conjunction with Process_Val and Output to determine whether holdback

should become active, depending on the setting of HB_Mode. It defines limits
relative to Output within which Process_Val is expected to remain.

End Segment (ES)

The last segment to be considered as part of the profile. This allows a profile to be
brought to an end before all non-null segments have been executed. A change
made to this parameter whilst a program is running will become effective if the
segment made to be the end segment has not yet completed executing.

Num_Loops (NL)
The number of times the current profile will be repeated before passing to the next
program or flagging that the program has ended if NextProgNum is None.

NextProgNum (NPN)

This input allows a new program to be loaded from the file store once the
thecurrent program has completed.

None(0):

No program will be loaded when the current program completes.

15-48

PC 3000 Function Blocks

Prog8Time

Prog_1(1): The program whose name is given as ProgName when
ProgNumber=1 will be loaded from the PC3000 File Store when the
current program completes. If there is no ProgName associated with
ProgNumber=1 then the ProgStatus will show LoadErr and Mode
will go to Reset.

Prog_2(2): The program whose name is given as ProgName when
ProgNumber=2 will be loaded from the PC3000 File Store when the
current program completes. If there is no ProgName associated with
ProgNumber=2 then the ProgStatus will show LoadErr and Mode
will go to Reset.

etc up to

Prog_32(32)

RampTime1l (RT1)

The time that will be required for Output to move from its current value to the
ramp level of segment 1 in standard PC3000 Time format.

RampDOT1 (DD1)

This gives the possibility of setting each of the eight digital outputs of the
Prog8Rate function block to a particular state during the ramp of segment 1. The
value of this variable is interpreted as an eight bit pattern, the lowest bit setting
Dig_Out_1, and the highest bit setting Dig Out_8.

RamplLvl1 (RL1)

The level of Output which, when achieved, will cause the dwell of segment 1 to
commence.

DwellTime1 (DT1)

The length of time for which the Output will remain static at RampLvl1 after the
ramp part of segment 1 is completed.

DwellDO1 (DD1)

This gives the possibility of setting each of the eight digital outputs of the
Prog8Timefunction block to a particular state during the dwell of segment 1. The
value of this variable is interpreted as an eight bit pattern, the lowest bit setting
Dig Out_1, and the highest bit setting Dig_Out_8.

PC 3000 Function Blocks 15-49

Prog8Time

RampTime2 (RT2)

The time that will be required for Output to move from its current value to the
ramp level of segment 2 in standard PC3000 Time format.

RampDO2 (RD2)

This gives the possibility of setting each of the eight digital outputs of the
Prog8Time function block to a particular state during the ramp of segment 2. The
value of this variable is interpreted as an eight bit pattern, the lowest bit setting
Dig_Out_1, and the highest bit setting Dig_QOut_8.

Ramplvl2 (RL2)

The level of Output which, when achieved, will cause the dwell of segment 2 to
commence.

DwellTime2 (DT2)

The length of time for which the Qutput will remain static at RampLvl1 after the
ramp part of segment 2 is completed.

DwellDO2 (DD2)

This gives the possibility of setting each of the eight digital outputs of the
Prog8Rate function block to a particular state during the dwell of segment 2. The
value of this variable is interpreted as an eight bit pattern, the lowest bit setting
Dig Out_1, and the highest bit setting Dig_Out_8.

up to
DwellDOS8 (DD8)

CommsSegNum
Indication of which Rate, Level and Dwell the communications mnemonics are
using.
See Edit Segment Number in Table 15-5.

Output (OP)

The current value of the profile being produced by the program now running. This
Output would normally be wired to the Setpoint input of a PID loop or used in
some other way as a setpoint for control action.

HB_Active (HA)

If HB_Active is true this indicates that the value currently being fed to the
Process_Val input deviates from the current value of Qutput by more than the
amount defined by HB_Mode and HB_Deviation.

15-50 PC 3000 Function Blocks

Prog8Time

ProgramEnd (PE)

This output indicates when the current program has ended, or where multiple
programs are chained together using NextProgNum, when the last program in a
chain has ended.

Status (SS)

The success or otherwise of the last file operation to or from the PC3000 File Store
is indicated by this output, or, during a file operation, the operation in progress is

indicated.
Ok(0): The last file store operation was succesful, either save or load.
Saving(1): A save operation is in progress to the file store .

Loading(2): A load operation is in progress from the file store.

SaveErr(3): The last save to file store operation failed. This could be for a
variety of reasons, such as no file store exists, the file store is full
or the file name specified in the ProgName parameter is invalid.

LoadErr(4): The last load from file store operation failed. This could be for a
variety of reasons, such as no file store exists or the file name
specified in the ProgName parameter is invalid or is not a recipe
file.This error will also be reported if a program saved by a
Prog8Rate function block is loaded.

LoopsRemain (TR)

The number of loops (repeats) of the current program that have yet to be run once
the current loop is completed.

CurrentSeg (CS)

The number of the segment of the current program currently being executed.This
could either be the ramp or dwell part of the segment.

CurrentMode (CM)

This indicates whether the Ramp part or the Dwell part of the current segment is
being executed. Normally the ramp part of a segent is followed by the dwell, and
then the next segment begins to execute.

However, if Mode is set to Track when the dwell has already commenced, the
CurrentMode will revert to Ramp. When Mode is set to Run again, the Output
will ramp to the current segment RampLvl value in the current segment
RampTime and then CurrentMode will again indicate Dwell. This second dwell
period will last for the full DwellTime of the current segment.

CurrentTmRem (CTR)

The time that will be required to complete the operation indicated by
CurrentMode (i.e. a ramp or dwell) assuming their are no interruptions caused by

PC 3000 Function Blocks 15-51

Prog8Time

hold back becoming active, or due to Mode being other than Run. The calculations
are based on the current value of Output and the profile parameters for the current
segment. If hold back becomes active, or Mode is changed, CurrentTmRem
indicates the time required to complete the operation indicated by CurrentMode
if hold back were to become immediately inactive, or Mode were to be
immediately changed to Run.

SegTmRem (STR)

The time that will be required to complete the current segment assuming their are
no interruptions caused by hold back becoming active, or due to Mode being other
than Run. The calculations are based on the current value of Qutput and the
profile parameters for the current segment.

If hold back becomes active, or Mode is changed, SegTmRem indicates the time
required to complete the current segment if hold back were to become immediately
inactive, or Mode were to be immediately changed to Run.

ProgTmRem (PTR)

The time that will be required to complete the remaining number of loops of the
current profile assuming their are no interruptions caused by hold back becoming
active, or due to Mode being other than Run. The calculations are based on the
current value of Qutput and the profile parameters for the current segment
together with the Num_ILoops parameter.

If hold back becomes active, or Mode is changed, ProgTmRem indicates the time
required to complete the current segment if hold back were to become immediately
inactive, or Mode were to be immediately changed to Run.

When Mode is set to Run and changes are made to program parameters,
ProgTmRem will only be recalculated at the start of the next segment or at the
changeover from a ramp to a dwell.

Dig_Out 1 (DO1)
A digital output which is driven by bit O of the RampDO and DwellDO
input/outputs of the current segment. For example, if bit 0 of RampDO4 is 1 and

bit O of DwellDO4 is 0, then during the ramp in segment 4 Dig_Out_1 will be
switched on, and during the dwell in segment 4 Dig_Out_1 will be switched off.

Dig_Out 2 (DO2)
A digital output which is driven by bit 1 of the RampDO and DwellDO
input/outputs of the current segment. For example, if bit 1 of RampDO4 is 1 and
bit 1 of DwellDO4 is 0, then during the ramp in segment 4 Dig_Out_2 will be
switched on, and during the dwell in segment 4 Dig_Out_2 will be switched off.

Dig Out 3 (DO3)
A digital output which is driven by bit 2 of the RampDO and DwellDO
input/outputs of the current segment. For example, if bit 2 of RampDQO4 is 1 and

15-52 PC 3000 Function Blocks

Prog8Time

bit 2 of DwellDOA4 is 0, then during the ramp in segment 4 Dig_Out_3 will be
switched on, and during the dwell in segment 4 Dig_QOut_3 will be switched off.

Dig_Out 4 (DOA4)
A digital output which is driven by bit 3 of the RampDO and DwellD
input/outputs of the current segment. For example, if bit 3 of RampDO4 is 1 and
bit 3 of DwellDO4 is 0, then during the ramp in segment 4 Dig_Out_4 will be
switched on, and during the dwell in segment 4 Dig_Out_4 will be switched off.

Dig Out 5 (DO5)

A digital output which is driven by bit 4 of the RampDO and DwellDO
input/outputs of the current segment. For example, if bit 4 of RampDO4 is 1 and
bit 4 of DwellDO4 is O, then during the ramp in segment 4 Dig_Out_5 will be
switched on, and during the dwell in segment 4 Dig_QOut_5 will be switched off.

Dig_Out 6 (DO6)

A digital output which is driven by bit 5 of the RampDQO and DwellDO
input/outputs of the current segment. For example, if bit 5 of RampDQO4 is 1 and
bit 5 of DwellDOA4 is O, then during the ramp in segment 4 Dig_Out_6 will be
switched on, and during the dwell in segment 4 Dig_QOut_6 will be switched off.

Dig Out 7 (DO7)

A digital output which is driven by bit 6 of the RampDOQO and DwellDO
input/outputs of the current segment. For example, if bit 6 of RampDO4 is 1 and
bit 6 of DwellDO4 is 0, then during the ramp in segment 4 Dig Out_7 will be
switched on, and during the dwell in segment 4 Dig_Qut_7 will be switched off.

Dig_Out 8 (DO8)
A digital output which is driven by bit 7 of the RampDQO and DwellDO
input/outputs of the current segment. For example, if bit 7 of RampDQO4 is 1 and

bit 7 of DwellDO4 is O, then during the ramp in segment 4 Dig_Out_8 will be
switched on, and during the dwell in segment 4 Dig_Out_8 will be switched off.

PC 3000 Function Blocks 15-53

Prog8Time

Parameter Atiributes

Name Type |Cold Start | Read | Write Type Specific Information
Access |Access
Mode ENUM Reset (0) Oper Oper See Parameter descriptions
Address STR 'EPPT' Super Super |Max 4 characters
RealFormat STR " Super Super |Single character
Writelnhibit BOOL Rd_Wr(0) Super Super Senses Rd_Wr{0)
Rd_Only(1)
ProgNumber DINT 1 Oper Oper High Limit |32
Low Limit 1
ProgName STR " Oper Oper Max 12 characters
Reset Output REAL 0 Super Super High Limit |+3.402823E+38
Low Limit |-3.402823E+38
Start_Mode ENUM Run (1) Oper Oper See parameter list
Process_Val REAL 0 Oper Oper High Limit |+3.402823E+38
Low Limit |-3.402823E+38
HB Mode ENUM Off (0) Oper Oper See parameter list
HB_Deviation REAL 0 Oper Oper High Limit |+3.402823E+38
Low Limit |-3.402823E+38
End_Segment DINT 8 Super Super High Limit |8
Low Limit |1
Num_Loops DINT 1 Super Super |High Limit |999
Low Limit |Oms
NextProgNum |ENUM None(0) Super Super |See parameter list
RampTimel to |REAL 0 Super Super |High Limit |23d23h59m59s999ms
RompTime8 Low Limit |Oms
RampDO1 to DINT 0 Super Super High Limit |256
RampDO8 Low Limit |0
Ramplv11 to REAL 0 Super Super High Limit |+3.402823E+38
RamplLv18 Low Limit |-3.402823E+38
DwellTimel to |TIME Oms Super Super High Limit |23d23h59m59s999ms
DwellTime8 Low Limit |Oms
DwellDO1-to DINT 0 Super Super High Limit |256
DwellDO8 Low Limit |0
CommsSegNum | DINT 1 Super Super High Limit |8
Low Limit 1
Output REAL 0 Oper Block High Limit |+3.402823E+38
Low Limit |-3.402823E+38
Table 15-6 Prog8Time Parameter Attributes (continued)
15-54 PC 3000 Function Blocks

Prog8Time

Name Type Cold Read Write Type Specific Information
Start Access | Access
HB_Active BOOL No(0) Oper Block Senses No(0)
Yes(1)
ProgramEnd BOOL Yes(1) Oper Block Senses No(0)
Yes(1)
Status ENUM Ok(0) Oper Block See parameter list
LoopsRemain | DINT 0 Oper Block High Limit | 999
Low Limit |0
CurrentSeg DINT 8 Oper Block High Limit |8
Low Limit |1
CurrentMode |BOOL Dwell(1) |Oper Block Senses Ramp(0)
Dwell(1)
CurrentTmRem | TIME Oms Oper Block High Limit | 23d23h59m595999ms
Low Limit |Oms
SegTmRem TIME Oms Oper Block High Limit | 23d23h59m595s999ms
Low Limit [Oms
ProgTmRem TIME Oms Oper Block High Limit |23d23h59m59s999ms
Low Limit [Oms
Dig Out 110 |BOOL Off(0) Oper Block Senses Off{0)
Dig_Out 8 On(1)

Table 15-5 Prog8Time Parameter Attributes (continued)

PC 3000 Function Blocks

15-55

