Chapter 4

FILE SYSTEM

Edition 3

Overview

FSFORMAT ...ttt 4-1
Functional Descriptioncocceeeeeviiiiiiieiiviieceeeeeeee, 4-1
Function Block Aftributesc.ccoovviiieiiiiiiiiiiienenenen. 4-2
Parameter Descriptionsceevveviiieiiiiiiieiiie e, 4-2
Parameter Attributesccuuveeeiiieiiiiiiien e, 4-4

FSFILEHNDLuiiiiiiiieeeeeeeieie ettt 4-5
Functional Descriptionccccovviiiiiiiiiiieiiiiieeeeeenn, 4-5
Function Block Aftributesccccoevvviiiiiiiiiiiiiiiiieeeeeee, 4-5
Parameter Descriptionscc.evevvieieiiniiiieeiinieninen. 4-6
Parameter Aftributescouceeiiiiiiieiiiiiieecee e, 4-8

FSFREESPCEcoiiiiiieeeeee e e e e ee e e e e eeeees 4-9
Functional Descriptionccccovviiiiiiiiiiiiiiiiieeeeeeen, 4-9
Function Block Aftributesccooovviiiiiiniiiiiiiiiiienneiens 4-9
Parameter Descriptionsceeevieiiieiiiiinieiien v, 4-10
Parameter Attributescccovvieeiiiiiiiiiiiinn e, 4-11

FSACCESS ...ttt 4-12
Functional Descriptionccccueevvvveiiviieieiieeieeeeennn, 4-12
Function Block Atftributesccooeeviiiiiinnniieiiiiiinnnen. 4-12
Parameter Descriptionscccceeviiieiieiiieiiieieieennnen, 4-13
Parameter Attributescceeeiiiiiiiiiiiieee e, 4-15

PC 3000 Function Blocks Cont. 4-i

FSDIRECTRY ...ouiiiiiiiiiiiiin ittt 4-16

Functional Descriptioncccoeiviiiieeiiiiieeeeiiieeeeeinn, 4-16
Function Block Aftributescoeviiiiiiiiiiiniiiciiiin, 4-16
Parameter Descriptionscevveuieiiiiiriiiieieiineennnens 4-17
Parameter AHributescooeiiiiiiiiiiiiiiieciceee e, 4-20

Cont. 4-ii

PC 3000 Function Blocks

Overview

The FileSystem function block class contains a set of function blocks for the
definition and control of the PC3000 File System. The File System is used by the
Programmer function blocks for the storage of data and can also be used for simple
data logging applications. Facilities are available in the DOS programming tools
for uploading and downloading files from/to the PC3000.

PC 3000 Function Blocks Cont. 4-iii

File Store Format

FILE STORE FORMAT FUNCTION BLOCK

ENUM

State

State ENUM

DINT Reqg UWSize ActualUWSize DINT

DINT DINT

Reqg FBSize ActualFBSize

alalaln

DINT Reqg NoFile ActualFSSize DINT

ActualNoFile DINT

-

Figure 4-1 File Store Format Function Block

Functional Description

The PC3000 File Store is created in spare RAM space within the LCM. The RAM
space within the LCM is also required for user programs, downloaded user source,
and downloadable function blocks. Therefore the precise amount of space that can
be assigned to the file store depends on the amount of memory required for these
other uses, and the amount of RAM fitted to the LCM. Refer to the technical
documentation for the LCM for valid memory configurations.

The FSFormat function block allows a file store to be set up within spare RAM.
Once this file store has been created it remains intact with all files present until
explicitly re-formatted by means of an instance of the FSFormat function block.

The amount of memory required for the user program can be determined from the
On-Line Status information provided by the PC3000 Programming Software after
a program has been downloaded. Enough space must be allowed for the largest
user program that will be downloaded to the PC3000 together with any associated
downloadable function blocks that are required. The LCM will go into an idle state
when a download is attempted if insufficient space is available for the user
program and downloadable function blocks.

Remember that the File Store is only deleted from memory if power is lost to the
LCM and the battery is disconnected. Its size may be adjusted (although this
means its contents will be deleted) by means of the File Store Format Function
Block.

PC 3000 Function Blocks 4-1

File Store Format

An attempt to create a file store larger than permitted by other memory uses whilst
a program is running causes a file store of the largest size possible to be created
with the current program and downloadable function blocks remaining intact.
However, this would mean that a larger program or one requiring more
downloadable function block space could not be downloaded until the file store
was reformatted.

Function Block Attributes

TYPE: oo, D80

Class: ..eeeeerecreeeeecceeeeeeeeeeeens FILESYSTEM

Default Task:coovvveevvvnnnnnnnnee. Task 2

Short List: ...cevvveeeeiiieeeeiieeeeees State, ActualUWSize, ActualFBSize,
... ActualFSSize.

Memory Requirements: 36 Bytes

Parameter Descriptions

State (S)

When driven as an input, this parameter allows the formatting of the file store to
be carried out. It also displays the result of the format operation.

Ok: The quiescent state of this input/output - either no format action
has yet been undertaken, or the last format was succesful.

Write: Used to initiate a format operation. The State parameter
automatically returns to either Ok or Error depending on the
success or otherwise of the format operation.

Error: The last format action was unsuccesful.

Req_UWSize (RUW)

The size of the available RAM that the user wishes to reserve for user programs. If
this is less than the current user program size then the current user program size is
used.

4-2 PC 3000 Function Blocks

File Store Format

Req FBSize (RFB)

The size of the available RAM that the user wishes to reserve for downloadable
function block libraries. If this is less than the current ActualFBSize then the
current downloadable function block library size is used.

Req NoFile (RNF)

Permits the user to limit the number of files that can be kept in the file store at any
one time.

ActualUWSize (AUW)

The amount of the available RAM that is currently reserved for user programs.
This does not represent the actual size of the current user program.

ActualFBSize (AFB)

The amount of the available RAM that is currently reserved for downloadable
function block libraries. This does not represent the actual size of the currently
downloaded function block library.

ActualFSSize (AFS)

The amount of the available RAM that is currently reserved for the PC3000 File
Store.

ActualNoFile (ANF)

The actual number of files that can be kept in the file store at any one time.

PC 3000 Function Blocks 4-3

File Store Format

Parameter Attributes

Name Type Cold Start Read Write Type Specific
Access | Access Information
State ENUM Ok (0) Oper Oper See Parameter List
Req_UWSize DINT 0 Oper Oper High Limit 2147483647
Low Limit 0
Req FBSize DINT 0 Oper Oper High Limit 2147483647
Low Limit 0
Req_NofFile DINT 0 Oper Oper High Limit 255
Low Limit 20
ActualUWSize DINT Memory in | Oper Block High Limit Depends on
LCM, RAM1, LCM RAM
RAM2 Low Limit 0
ActualFBSize DINT Memory in | Oper Block High Limit Depends on
LCM, RAM3, LCM RAM
Low Limit 0
ActualFSSize DINT 0 Oper Block High Limit Depends on
LCM RAM
Low Limit 0
ActualNoFile DINT 0 Oper Oper High Limit 255
Low Limit 20

Table 4-2 File Store Format Function Block

4-4 PC 3000 Function Blocks

File Store File Handling

FILE STORE FILE HANDLING FUNCTION BLOCK

FSFileHndl

STR —|_ FileNamel Status ENUM
stk — | FileName2
ENUM —|: Command _ _ _ _ _ _ _ _ _ _ Cormmand ENUM

Figure 4-2 File Store File Handling Function Block

Functional Description

This block enables simple file handling operations to be carried out within a pre-
formatted file store with files present. To carry out operations which require a
knowledge of file names, prior use of FSDirectry function block may be
necessary.

Function Block Attributes

TYPE: o, D82

Class: .cooovvevceeeeriieeereenenees FILESYSTEM

Default Task: Task 2

Short List: ..covveeeeeeeeiieeeeenns FileNamel, FileName2, Command, Status.

Memory Requirements: 42 Bytes

PC 3000 Function Blocks 4-5

File Store File Handling

Parameter Descriptions

FileName1 (FNT1)

FileName2 (FN2)

Command (CMD)

The name of the first file to be used in conjunction with Command. The drive
letter R: for RAM or E: for ROM must be inserted in front of the file name. Drive
and file names are case sensitive.

The name of the second file to be used in conjunction with Command if required.
Drive and file names are case sensitive.

The control parameter for this function block.

Ok:

Copy:

Delete:

CloseAl:

Status (ST)

The quiescent state of this input/output - either no file handling
action has yet been undertaken, or the last requested action has
been completed or aborted.

Copy the file whose name is given by FileNamel to the file whose
name is given by FileName?2. If FileName2 does not exist, it will
be created. If it does exist its contents will be overwritten.
Command will return to Ok when the copy has either completed
succesfully or is known to have failed.

Delete the file whose name is given by FileNamel. The filewhose
name is given by FileName?2 is not affected. Command will return
to Ok when the deletion has either completed succesfully or is
known to have failed.

All files in the file store are examined to see which files are
believed to be open. Any file which is open but does not have a
function block currently accessing it is closed.

This output indicates the status of the current operation or the completion status of

the previous operation if no current operation is in progress.

PC 3000 Function Blocks

File Store File Handling

Ok:

Copying:

Error:

OpenErr:

ClsErr:

CopyErr:

ReadErr:

WrtErr:

Last operation completed succesfully.

A copy operation is in progress.

An undefined error occured in the last operation.

An error occured when attempting to open a file.

An error occured when attempting to close a file.

An error occured when attempting to copy a file.

An error occured when attempting to read a file.

An error occured when attempting to write a file.

PC 3000 Function Blocks

4-7

File Store File Handling

Parameter Attributes

Name Type Cold Read Write Type Specific
Start Access Access Information
FileName1 STR " Oper Oper Max 12 char
FileName?2 STR " Oper Oper Max 12 char
Command ENUM Ok(0) Oper Oper See Parameter List
Status ENUM Ok(0) Oper Block See Parameter List

Table 4-2 File Store File Handling Function Block

4-8

PC 3000 Function Blocks

File Store Free Space

FILE STORE FREE SPACE FUNCTION BLOCK

/ FSFreeSpce

STR Drive Status ENUM

DINT

TIME Refresh Free_ Space

-

Figure 4-3 File Store Free Space Function Block

11]

Functional Description

This function block provides a monitor on the current free space within the
PC3000 File Store. The refresh rate may be varied to limit the overhead of this
function block on the system.

Different PC3000 File Store drives may be examined. The only drive types
currently valid are 'R, indicating a RAM-based file store and 'E' indicating a
ROM based file store.

Function Block Attributes

TYPC: e D84

Class: cooeeeeeeerirereee e FILESYSTEM

Default Task:cceuuevveenviiennnnees Task 2

N 176) ¢ 3 53 1] R Drive, Refresh, Status, Free_Space.
Memory Requirements: 20 Bytes

PC 3000 Function Blocks 4-9

File Store Free Space

Parameter Descriptions

Drive (DRV)

The drive (in other words, the memory type) to be examined. Valid entries are'R’,
indicating a RAM-based file system and 'E', indicating a ROM-based file system.

Refresh (R)

The frequency with which the memory space is examined to update the
Free_Space output.

Status (ST)
Indicates the status of the selected drive.

OK: The drive has been formatted and is functional.

NoSuprt: The drive type selected is not recognised or is not valid for the
current file system.

NoFile: Memory is allocated for a file store but it has lost its directory
structure. A re-format wil be required.

NoFrmat: The drive is not formatted. This does not necessarily indicate that
the drive could be formatted or is valid for the current system.

Free Space (FRE)

The amount of space free on the selected drive. This is the space available for new
files.

4-10 PC 3000 Function Blocks

File Store Free Space

Parameter Atiributes

Name Type Cold Start Read Write Type Specific
Access Access Information
Drive STR R Oper Oper Only 'R'and 'E' are currently valid
Refresh TIME 1s Oper Oper High Limit 23d 23h 59m
595 999ms
Low Limit Oms
Status ENUM Ok(0) Oper Block See Parameter List
Free Space DINT Format Oper Block Range depends on LCM memory
configuration size

Table 4-3 File Store Free Space Function Block

PC 3000 Function Blocks

File Store Access

FILE STORE ACCESS FUNCTION BLOCK

FSAccess
DINT

mvoy — | Mode _ _____________ ENUM
ENUM —|: _____________ ENUM

STR

Status ENUM

Figure 4-4 File Store Access Function Block

Functional Description

This block allows new files to be created and the contents of existing files to be
read or written either one line at a time or one character at a time.

Note: These are two special versions of this block available as
downloadable function blocks.

These will search the initial character(s) of each line of the file for:
(a) an alphanumeric

(b) a number

Function Block Attributes

TYPE: weeereereeeeecrreeereeee e D86

Class: ..ceeverevveeeeeeiieeeeeeecneeeeens FILESYSTEM

Default Task: ...coceevveeveneerennee. Task_2

Short List: ..vvveeeeiiieeeeeeieeeeee, FileName, Mode, State, String.
Memory Requirements: 252 Bytes

4-12 PC 3000 Function Blocks

File Store Access

Parameter Descriptions

FileName (FNM)

Mode

The name of the file which will be read or written. The drive letter R: for RAM or
E: for ROM must be inserted in front of the file name. Drive and file names are

case sensitive.

(M)

Determines the operation which will be carried out by means of the State and
String input/outputs.

Ok

Read

Write

The quiescent state of the function block. The State parameter has
no effect when mode is set to Ok.

The State parameter can be used to read line by line or character by
character from the file. The information read will appear on the
String input/output parameter. When the end of the file is reached,
Mode will return to Ok automatically - no action by the user
program is required to achieve this.

The State parameter can be used to write line by line or character
by character to the file. The information to be written is input via
the String input/output parameter and will commence with the first
line of the file - any information in the file at the start of the Write
operation will be overwritten.

Writing can only commence when no other function blocks are accessing the file
in question for either read or write. A useful way of checking this is the parameter
FSDirectry.FileRdOpen which should be zero before writing can commence.

Append

The State parameter can be used to append line by line or character
by character to the file. The information to be appended is input via
the String input/output parameter and this will be placed after the
information already in the file.

Note that the first character or line to begin a file must be inserted using
Mode=Write. Thereafter characters and lines may be appended.

PC 3000 Function Blocks 4-13

File Store Access

Appending can only commence when no other function blocks are accessing the
file in question for either read or write. A useful way of checking this is the
parameter FSDirectry.FileRdOpen, which should be zero before appending can

commence.

State (S)

Enables information to be read or written from the file whose file name is given by
FileName one line or one character at a time.

Ok

NextLn

NextChr

String (STR)

The quiescent state of the function block. State returns to Ok
automatically. No action by the user program is required.

If the Mode parameter is set to Read, this will cause the next line
of the file to be read and the result shown at the String
input/output. The line terminator (<CR><LF>) will not be
shown.

If the Mode parameter is set to Write, this will cause the string
shown at the String input/output to be written as the next line of
the file, and terminated with 'SRL' i.e. <CR><LF>.

If the Mode parameter is set to Read, this will cause the next
character of the file to be read and the result shown at the String
input/output. The line terminator (<CR><LF>) will not be shown.

If the Mode parameter is set to Write, this will cause the string
shown at the String input/output to be written as the next character
of the file. A line may be terminated by writing in $R then $L as
the last two characters written or appended.

The string value to be written to the file when in Write or Append Mode, or the

string value read from the file whilst in Read Mode.

Counter (CNT)

The current line number within the file when using NextL.n mode.

PC 3000 Function Blocks

File Store Access

Status (ST)

Indicates the success or otherwise of the last operation requested through the State
parameter to the file whose name is given by FileName.

Ok The last operation was succesful.

Opn_Err There was an error opening the file.

Cls_Err There was an error closing the file.

EOF The last operation caused the end of the file to be reached.

LnToLng The String supplied via the String as an input to be written to the
file was too long. Note that when writing using State=NextChr
String should only be a single character.

WrtErr An error occured when attempting to write to the file.

Parameter Attributes

Name Type Cold Read Write Type Specific
Start Access Access Information
FileName STR " Oper Oper Maximum 12 characters
Mode ENUM Ok(0) Oper Oper See Parameter List
State ENUM Ok(0) Oper Oper See Parameter List
String STR " Oper Oper Maximum 80 characters
Counter DINT 0 Oper Block High Limit 2147483647
Low Limit 0
Status ENUM Ok(0) Oper Block See Parameter List

Table 4-4 File Store Access Parameter Attributes

PC 3000 Function Blocks

4-15

File Store Directory Access

FILE STORE DIRECTORY ACCESS FUNCTION BLOCK

FSDirectry
STR —|: Drive FileName STR
ENUM_: State_ _ _ _ _ _ _ ______ State ENUM
DINT —|: FileNumber_ _ _ _ __ FileNumber DINT
FileSize DINT
FileState ENUM
FileRdOpen DINT
TotalFiles DINT
Status ENUM

\-

Figure 4-5 File Store Directory Access Function Block

Functional Description

This function block gives the ability to determine what are the names and sizes of
the files currently in the file store. The amount of free space in the file store is also
given.

Information on the outputs does not update automatically - it must be updated by
the user program by means of the State input.

Function Block Attributes

TYPE: et D88

Class: .eveveeveceeeerneeree e FILESYSTEM

Default Task:cccccceevrrrnneen. Task_2

Short List: ceeeeeeveeeeeeeeeeeeveeennnnn. Drive, State, FileNumber, FileName
Memory Requirements: 54 Bytes

4-16

PC 3000 Function Blocks

File Store Directory Access

Parameter Descriptions

Drive (DRV)
Specifies which type of memory to examine for the file store information.

Possible memory types are RAM, designated by 'R', and EPROM, designated by

State (S)

This parameter enables the user program to control the examination of the
directory on the chosen Drive.

Ok The quiescent state of the block.

Top Causes the top of the directory to be examined. The FileNumber
will be set to zero. and State will return immediately to Ok. No
action is required by the user program to achieve this.

If there are files in the file store this top entry will bear the FileName <FREE-
SPACE> and FileSize will equate to the amount of memory storage available in
the file store excluding space already used by files. This is the same figure as is
given by FSFreeSpce.Free_Space, but not the same as FSFormat. A ctualFSSize.

If there no files in the file store this top entry will have the FileName 'FREE'.
FileSize will equate to the amount of memory storage available in the file store
less the space required to maintain the file store. This is the same figure as is given
by FSFreeSpce.Free_Space, but not the same as FSFormat. ActualFSSize even
when the file store is empty.

ReadNxt Information about the next entry in the directory list from the file
whose FileNumber is indicated is presented on the outputs. State
will return immediately to Ok - no action is required by the user
program to achieve this. FileNumber will automatically
increment.

If the directory end has been reached (indicated by the Status) then FileNumber
will continue to increment but none of the other outputs will change.

ReadAgn Information about the entry in the directory list whose
FileNumber is indicated is presented on the outputs. State will
return immediately to Ok - no action is required by the user
program to achieve this. This allows the ouptuts to be updated
with the current state of a particular file.

PC 3000 Function Blocks 4-17

File Store Directory Access

FileNumber (FNB)

The function block will automatically update this input/output parameter if the
State parameter is used to scroll through the directory using ReadNxt.

FileNumber may however be set to a specific value and details about the the
chosen file displayed on the outputs by setting State to ReadAgn.

FileName (FNM)

The name of the file last updated by the actions of the State and FileNumber
inputs. Four built-in file names are used:

No file store is set up for this Drive.
'FREE' No files are in the file store

'<FREE-SPACE>' The top of the directory is being examined. FileSize will
show the amount of free space for files on the Drive indicated, and FileState will
show Unused.

'<END-OF_DIR>' FileNumber is the number of actual files plus one, and
Status shows DirEnd.

Apart from these, file names will appear for files that have been loaded by the user
Or user program.

FileSize (FSZ)
The size in bytes of the file indicated by FileName.

FileState (S)

Indicates the current state of the file indicated by FileName.

Unused This space is not currently used by a file - normally only seen at
the top and end of the directory.

4-18 PC 3000 Function Blocks

File Store Directory Access

Closed The file is closed - no other function block is accessing the file.

WrtOpen A function block is writing to the file, or the file being accessed
over a comms link.

RdOpen One or more function blocks are reading from the file. The number
of function blocks currently reading from the file is shown by
FileRdOpen.

RdWtOpn One or more function blocks are reading from the file and a

function block is writing to the file. The number of function blocks
currently reading from the file is shown by FileRdOpen.

NoSpce An error has occured in the file system due to the file store being
full.

NoSpCls

NoSpWrt [Low level system errors - Please report to Eurotherm Controls

NoSpRd Limited.]

NoSpRdWt

FileRdOpen (FRO)

The number of function blocks currently reading from the file whose name is
given by FileName.

TotalFiles (TFL)

The total number of files in the directory the last time this function block read the
directory from the top.

Status (ST)

Indicates the completion status of the last operation requested by State.
Ok The last operation completed succesfully

DirEnd The last operation caused a read to the end of the directory.

PC 3000 Function Blocks 4-19

File Store Directory Access

Error

An error occured in attempting the last operation. The outputs will

not be showing reliable information.

Parameter Atiributes

Name Type Cold Start Read Write Type Specific
Access Access Information
Drive STR R Oper Oper Only 'R' and 'E' are currently valid
State ENUM Ok(0) Oper Oper See Parameter List
FileNumber DINT 0 Oper Oper High Limit 2147483647
Low Limit 0
FileName STR " Oper Block Max 12 characters
FileSize DINT " Oper Block High Limit 2147483647
Low Limit 0
FileState ENUM Unused(0) |Oper Block See Parameter List
FileRdOpen DINT 0 Oper Block High Limit 30
Low Limit 0
TotalFiles DINT 0 Oper Block High Limit 2147483647
Low Limit 0
Status ENUM Ok(0) Oper Block See Parameter List
Table 4-5 File Store Directory Access Parameter Attributes
4-20 PC 3000 Function Blocks

	

