Chapter 3
COMMUNICATIONS

Edition 3

Contents

Communications Overview

INTRODUCTION ...ttt e e eeeas 3-1
PUIMPOSE oeniiiniiii e 3-1
SCOPE ettt 3-1

COMMUNICATIONS PRINCIPLES..........ceevieerieiiinnnnne. 3-2
Master-slave operationcccceeeiiiiiiiiiiiiieeeennne. 3-2
PEEr-10-PEEI ...civiiiii i 3-3
Parameter addressingcccoevvvvvevvieieinieieennnennnnn, 3-4

COMMUNICATIONS PORTScoouiereirieiiiiiieneeeeeeannnn 3-5
STANAArds ...coeviiiiiieeiee e 3-5
Installing intelligent modulesccoeviirennnnnnnnn. 3-6
Cabling devices to ports.........ccceeeeiveeeeeeienneennnnn. 3-7
Multidropped serial linksccccovveeeiiiiiieeieinieneenn, 3-7
Converting RS422 to RS232 operation.................. 3-8

DEFAULT COMMUNICATIONSccooviiiiiiiiieeeeeeenns 3-10
Ports sSUPPOrt.....iieiiiei e, 3-10
Addressing parameters.........cccceeeiiiiieiiiiiiieeeenne. 3-11
Custom applicationscceeeiiiiiiieiiiiiieeeeinnnn. 3-14

COMMUNICATIONS FUNCTION BLOCKS.............. 3-15
Driver function blockscccoovviiiiiiiiiiiiiinnnn. 3-15
Slave variable function blocksccevvvvnnnnens 3-18
Remote variable function blocksccccceeeee.... 3-27
Raw communications block ... 3-39
Euro_Panel driver function block.........cccceeeeeoi. 3-40

PC 3000 Function Blocks

Contents (continued)

PROBLEMS AND SOLUTIONScccovviiierieeieiiinnn, 3-41

Communications

El BISYNC M.ttt eeaaaes 3-43
Functional Descriptionccccooeviiiieiiiiiiieeeinnnn... 3-43
Function Block Aftributes...........ccouiiiiiiiiiiinnnniil. 3-43
Parameter Descriptionscccccceveuiviiiiiiniinnennnnen. 3-44
Parameter Attributescccuuuiierniiiiiiiiiinnnnieennns 3-56

El BISYNC S..eiiiieee e 3-57
Functional Descriptionccccoveuieeiiiiiieeieiinnn, 3-57
Function Block Aftributesccovviuiinerniennnnnen. 3-59
Parameter Descriptionsccceeveevveeieieennnnennnnn. 3-59
Parameter Attributesccuvuieieieiiiiiiiinnnnieinnns 3-89

RAW COMMSot 3-90
Functional Descriptioncccceevvveeiiiiiieeieninnnen, 3-91
Function Block Aftributesuuvuiiiiiinineennnnnenn. 3-92
Parameter Descriptionsccocevviviiiiiiiiiieeeinnnnnn. 3-92
Parameter Aftributesc.cuuceeiviiiiiiiiiiiieeeeena, 3-112

SIEMENS M S .o 3-114
Functional Descriptioncccccovuieiiiiiiieeeennnnnn.. 3-114
Function Block Attributes...........ccccoeiiiiieiinnnnnn.l. 3-115
Parameter Descriptions.......c.ccceeviiiiniiinniinnnnnn.. 3-115
Error Reporting......ccveveviiiiiiiiiieiiieeii e, 3-135
Parameter Aftributesccuuveviriiiiiiiiiinnnneenns 3-144

Cont. 3-ii PC 3000 Function Blocks

Contents (continued)

JBUS Mo 3-145
Functional Descriptionc.cccoevvveiviiieiennnnnnnn.. 3-145
Function Block Aftributescevevevieniniinnninnnn. 3-146
Parameter Descriptionsccccevveeeiieeeinnnennnn.. 3-146
Error Reporting....ccccueeveiiiiiiiiiiiieciie e, 3-151
Parameter Aftributesccccvveeeeiiiiiiiiiiieeeeeenn, 3-153

JBUS S 3-154
Functional Descriptioncccceeeeeiiieiviiiiieeeeeenns 3-154
Function Block Attributescccccooiiiieiinnnnnnil. 3-155
Parameter Descriptions......ccccccvvevieiiiiiinennnennn. 3-155
Parameter Aftributescocoeiiiiiiiiiiiiiiieeennan. 3-175

TOSHIBA M .ot 3-176
Functional Descriptionc.ccccevviiiiiiiiieieennnnn... 3-177
Function Block Attributescccccooiiieiiinnnnnil. 3-177
Parameter Descriptions........ccccevvvveeeneiennnennnnn.. 3-178
Error Reporting....ccceuvveeiiiiiiieieecee e, 3-189
Parameter Attributesccoevivviieiiiiiiieniinnnnn, 3-197

EURO PANELcoiiiiiiiiiiieee et 3-199
Functional Descriptionsccceeeevvieeeeeeenennnnns 3-199
Function Block Attributescc.covveiiiiienniennnnn. 3-203

EURO PANELZ ..o 3-204
Functional Descriptioncccceeeiiiiiiiiiceieieennne, 3-205
Function Block Aftributescooeeveiviiiieenniennnne. 3-205
Parameter Descriptions........ccccovviiiiniiiinennnen.. 3-205
Basic Modes of Operation.........cccceeevvvviinnnnn.... 3-209
Mode Selectioncccoooiiiiiiiiiiiiii, 3-210
OIFL enhancements..........ccuuvueeerieiiiiiiiinnenennns 3-211
Parameter Attributesceeviiiiiiiiiiinniiiii, 3-216
Character Codes.......ccuuuivriiiiiiiiiiiiniieiiiiiinenen, 3-218

PC 3000 Function Blocks

Cont. 3-iii

Contents (continued)

ALLENB M L.t 3-223
Functional Descriptionccccoevieeiiiiiieeeennnnn.. 3-224
Function Block Aftributes..........ccoeviiiiiiiiiininnan, 3-231
Parameter Descriptions........cccccoevevviiiiiinniennnenn. 3-231
Configuration and Communication Errors 3-236

APPENDIX A Glossary of terms...........oueeeeennen... 3-241

APPENDIXB Standard Communications

Error Codes ...ccovvvviiiiiiieniieiiiinnnnnnn. 3-244

APPENDIX C ASCIl Tableceevvieiiiiiiieeeeeeeeneen. 3-246

Cont. 3-iv PC 3000 Function Blocks

Introduction

COMMUNICATIONS OVERVIEW

INTRODUCTION

Purpose

The Communication Overview describes the basic principles of serial
communications, assists with the selection of suitable communications protocols,
defines how to configure a communication system, provides guidance on how to
diagnose common faults and gives tips on how communications can be optimised.

This communications overview will be particularly useful to users when
configuring a serial communications system for the first time. It is assumed that
the reader is familiar with some communications terminology although
explanations of more technical terminology will be given. A glossary of terms is
provided in Appendix A.

Scope

This document contains technical information to enable a user to configure a
communication links between a PC3000 and other devices using serial
communications.

Serial communications can be used to interface with:
PC3000 Programming Station
Other Eurotherm instruments (e.g. 905s).
Motor drive units, thyristor stacks
Programmable Logic Controllers (e.g. using Siemens 3964 (R) protocol)
Operator displays such as the Euro Panel, Xycom 12 inch and 9 inch terminals
Other PC3000s
Data acquisition systems
Production cell control systems such as the Eurotherm Production Orchestrator
Supervisory systems such as Eurotherm ESP package
Printers for report generation

Miscellaneous proprietary equipment such as electronic weighing scales,
intelligent sensors, etc.

For information on using specific communications protocols, the user should refer
to the related protocol on this chapter.

PC 3000 Function Blocks 3-1

Communications Principles

COMMUNICATIONS PRINCIPLES

Serial communications allows information to be exchanged between two or more
devices by encoding information contained in a stream of data bytes, into a series
of bits. The bits can be transmitted by a variety of techniques depending on the
media used for the serial link. For example, if twisted-pair wire is used, the bits are
transmitted by switching the different voltage between the wire pair. Usually the
information transfer occurs by breaking the information down into a series of
messages which are framed with special control characters depending on the
protocol used.

The receiving device normally returns a short message to the sending device to
acknowledge each message reception. This is detected by the sender and implies
that the last message was correctly received and that the sender is free to send the
next message.

To ensure that transmission errors are detected, most protocols require that
messages are sent using a particular format, i.e. that certain control characters are
added to the beginning and end of the message. A special block check byte is
usually added to the end of the message, based on the message content. For
example, with the EI Bisync protocol, the clock check characters is based on the
longitudinal parity of each byte in the message and is transmitted as the last byte
of a message. The software within the remote device can then verify that the
message is correct by checking the framing control characters and the block check
character. If an error is detected, the remote device will usually return a special
control message such as a 'Not Acknowledged', NAK control character to indicate
to the sender that the message should be re-transmitted.

Master-slave operation

With most serial communications protocols, it is possible to have many devices
connected to one serial link using the Master-Slave mode of operation. One device
will be designated as the 'Master' and the rest will be designated as 'Slaves'.

The Master device is usually the only device on the serial link that can send
information to, or request information from other devices connected to the serial
link. The Slave device, have the complementary function; they can only send
information to the Master in response to a request from the Master device, or
receive information sent from the Master device. With this mode of operation, it is
not possible for a Slave device to send information directly to any other Slave
device or to send information when not specifically requested to do so.

This mode is often used when connecting the PC3000 to a number of discrete
instruments. For example, with a PC3000 configured as a Master of a EI Bisync
serial link, it is possible to poll a number of multi-dropped 900 series instruments
to obtain the process values from each instrument.

Even when there are only two devices on a point-to-point serial link, many serial
protocols require that one device is designated the Master and the other the Slave.

3-2

PC 3000 Function Blocks

Communications Principles

Slave address

Each Slave should have a different communications address so that the Master
device can direct messages to a selected device. For example, with EI Bisync, each
Slave device is given an address consisting of Group Identity (GID) and Unit
Identity (UID), which together form the address. As the addressing scheme varies
between protocols, care should be taken to ensure that each Slave device has a
unique and valid communications address for the particular protocol being used.

Master devices will also need to be configured to address specific Slave device,
i.e. the Slave addresses and addresses known to the Master should match. Setting
up addresses for use with PC3000 ports in Master or Slave modes is described
further in this document. For particular remote devices, such as a PLC using JBus,
setting up communications addresses will be defined in the communications
manual for the device.

Peer-to-peer

Using protocols that support the Peer-to-peer mode of operation, allow any device
on a network to initiate a request to send information to, or read information from
any other device. Generally this mode of operation is associated with token-
passing or Ethernet networks, although a few serial protocols such as the Siemens
3964 (R) protocol allow Peer-to-peer operation on a single point-to-point serial
link by a moving master technique.

"Master" "Master"
I [
I I
H PC3000 E PC3000
||S|Gve|| | | | "S|0ve"
1l PC3000 Ood||oog||looo
I
Multi-dropped
Point-to-point
I I I
I I I
a PC3000 B PC3000 H PC3000
Peer-to-peer

Figure 3-1 Communications configurations

PC 3000 Function Blocks 3-3

Communications Principles

Parameter addressing

To address a particular item, parameter or function within a device, each protocol
defines an addressing scheme. This can vary significantly for different protocols
but usually allows single or multiple items to be addressed.

With EI Bisync, typically the Group Identity (GID) and Unit Identity (UID) are
used to address a particular multi-dropped Slave device. A channel identity
(CHID) may be optionally required to address a sub-set of parameters. A two
character mnemonic is required to address the required parameters. For further
details on addressing parameters within PC3000 refer to the EI Bisync description
in this chapter.,

3-4

PC 3000 Function Blocks

Communications Ports

COMMUNICATIONS PORTS
Standards

The PC3000 provides a number of communications ports on modules such as the
LCM and Intelligent Communications Module (ICM). Each port will use or as is
the case with the ICM, can be configured to use, one of the following transmission
standards:

RS232 This standard allows a pair of devices to be connected over a short length
of cable, typically lengths less than 15M, using a single wire for
transmission and one for reception of data. It should only be used in
environments where there are low levels of electrical noise and for
transmission speeds less than 20K Baud. It does not allow multi-
dropped communications. both Half-duplex and full-duplex operation
is possible.

RS422 This allows one or more Slave devices to be multi-dropped from a single
Master device. It should be used in electrically noisy environments in
preference to RS232 but requires two pairs of twisted cable for the
transmission and reception of data. Unlike RS232, it provides balanced,
differential signal transmission and can therefore be used over longer
distances and at higher transmission speeds. Both Half-duplex and full-
duplex operation is possible, although half-duplex mode is more
commonly used.

RS485 this has similar characteristics to RS422, but allows devices to
communicate using peer-to-peer protocols. Only one pair of twisted
pair cables are used for both transmission and reception of data. Only
Half-duplex operation is possible using this mode.

Both RS422 and RS485 allow a serial link to have a total length of up to 1000m
without signal repeaters when using transmission speeds of up to 100K Baud and
24 AWG twisted pair cable.

A brief description of the capabilities of the PC3000 communications ports are
summarised in the following table.

PC 3000 Function Blocks 3-5

Communications Ports

Module Port Sandard Modes Speeds(Baud)
LCM A RS422 Point-to-point 75-38.4K
only*
B RS422 Point-to-point 75-38.4K
only*
C RS422 Master-to-Slave* 75-115.2KK
ICM A RS422 or RS485 Master or Slave 300-115.2K
B RS422 or RS485 Master or Slave 300-115.2K
C RS422 or RS485 Master or Slave 300-115.2K
D RS4232 Point-to-point 300-19.2K

All three LCM ports can function in either Master or Slave modes. LCM ports A
and B can only be used for point-to-point configurations when configured as
Slaves but can be Master of multi-dropped serial links. LCM port C can be used on
multi-dropped configurations as a Master or Slave.

Port D on the LCM can only be used for extension racks and should not be
connected to any other external device.

Links can be set on the LCM mother-board to set the Slave address which can be
used for protocols including EI Bisync and JBus. Similarly a switch is provided on
the ICM to set the default Slave Address. The Slave Address parameters on
communications, slave driver function blocks should be set to null values for the
hardware default addresses to be applied. See 'PC3000 Hardware Reference', for
details on setting Slave Addresses on these modules.

Installing intelligent modules

ICMs should be used when extra communications ports are required or where
there is a need to off-load some of the communications activity from the LCM.
This will be made evident by PC3000 performance data such as task overruns, see
the sections on tasking in the 'PC3000 Real Time Operating System Reference'.
To obtain specific metrics on function block performance refer to the function
block data in this chapter.

As with LBus modules, ICMs can be only installed in slots 1 to 5 in the first
PC3000 rack. It is important to note that only LBus modules including other ICMs
should be installed in slots between an ICM and the LCM. In other words, ICMs
should be part of a contiguous set of LBus modules next to the LCM.

The 'PC3000 Installation Handbook' should be referenced for further details on the
wiring and capabilities of communications modules.

3-6

PC 3000 Function Blocks

Communications Ports

Cabling devices to ports

A variety of cables are available to connect commonly used devices to the
PC3000. It is recommended that these are used where possible. The full list is
available in the 'PC3000 Installation Handbook HA(022231".

Between deviceand Device Mode
LCM or ICM 261 RS422
ICM Port D 12 inch colour terminal RS23
261 12 inch colour terminal RS23
LCM or ICM 9 inch terminal RS422
LCM or ICM Euro-Panel RS422
261 PC COM Port RS232

When cabling between Master and Slave devices using RS422, the Master
transmit pair Tx-and Tx+ should be connected to the Slave Rx- and Rx+, and
Slave Tx- and Tx+ connected to the Master Rx- and Rx+. Multiple Slave Tx-, Rx+
and Rx-, Rx+ are ganged together as shown in the figure 'Cabling Multi-drop
Slave Devices'.

Note: The ICM provides a link on the board to swap the Rx and Tx connections on
port A.

Master Slave1 Slave?2

Tx-(A) —Tx-(A) —— Tx-(A) —
Tx+(B) Tx+(B) ———— Tx+(B) —
Rx-(A) Rx-(A) —— Rx-(A) —
Rx(B) Rx+(B) — Rx+(B) —

Figure 3-2 Cabling multi-dropped slave devices using RS422

Multidropped serial links

When multi-dropping a number of Slave devices from a Master device, using
RS422, it is recommended that the cable stubs that connect to the 'tee' points
should be kept short where possible. "Tee' points should be positioned near to
groups of instruments so that individual stub cable lengths to each instrument is
short compared to distances between 'tee' points and the master port.

PC 3000 Function Blocks 3-7

Communications Ports

Typically, inexpensive non-shielded cables will support networks up to about
250m in length at transmission speeds up to 19.2K, for higher speed operation and
distances up to 1000 m, good quality shields, twisted pair cables are
recommended. Criteria such as the environment specially in regard to electrical
noise, position of cables, transmission speed and acceptable error rates should all
be considered when defining cabling requirements.

A master device can have up to 10 Slave devices multi-dropped on a single serial
link using RS422 and up to 31 using RS485.

Further details in cabling requirements can be found in the 'PC3000 Installation
Handbook HA022231".

Converting RS422 to R$S232 operation

Frequently it is necessary to connect a remote device such as a PC which only has
RS232 ports, to the PC3000. By connecting a suitable RS422 to RS232 converter,
any PC3000 RS422 port can be used.

A recommended device is:

Eurotherm 261 Universal Serial Interface

Order Code: 261/230 -for 230V supply operation
261/115 -for 115V supply operation

Even with the connection of a 261, a PC3000 port configured for RS422, can
continue to function in either Master or Slave mode, where this is normally
supported.

To minimise interference from electrical noise, it is recommended that the 261 is
positioned close to the remove device, so that the RS232 cable between 261 and
remote device is kept short.

3-8

PC 3000 Function Blocks

Communications Ports

Point-to-point

PC3000
RS422 RS232
261
PC
Multi-dropped
PC3000 PC3000
I I
Tee Point RS422 RS422
RS232
261 '
PC

Figure 3-3 Using RS422/RS232 convertors

Further details on the 261 is available in the 'PC3000 Installation Handbook '

The 261 can also be used to convert a PC3000 port such as ICM port D, that only
supports RS232 to RS422 if required.

PC 3000 Function Blocks 3-9

Default Communications

DEFAULT COMMUNICATIONS

Ports support

Ports A, B. and C will always support the EI Bisync protocol as default whenever
the PC3000 is powered-up, providing LCM ports A, B or C are not allocated to
specific communications function blocks within a running user program. This is to
ensure that it is always possible for the PC3000 Programming Station to
communicate with the PC3000 whenever a user program is not running or is not
loaded. (The use of communications function blocks is described in later sections
of this document).

By convention, LCM Port B is normally used for the Programming Station, but it
is possible to use ports A or C if these are not committed to other communications,
applications.

The serial communications supported on LCM ports A, B and C has the following
characteristics:

Baud rate 9.6K

Slave mode

EI Bisync Protocol

Slave address set by LCM Links*
One stop bit (EI Bisync Standard)

*The default Slave address (GID) is selectable by links on the LCM board to have
one of 16 addresses in the range 'O through to F'. The factory set address is '7'.
However, address selection and multi-dropping PC3000s is not possible on older
style issue 2 LCMs. LCM Address is fully described in 'EI Bisync Slave Driver'
function block within this chapter. Also refer to the 'PC3000 Installation
Handbook' for further details on the LCM and how to identify the issue number

Default communications is primarily designed for use by the PC3000
programming Station, but can also be used for communicating with the Eurotherm
Supervisory System (ESP) and the Production Orchestrator cell controller system.
For example, a PC running ESP can be connected to ports A, B. or C using the
default EI Bisync protocol. However, default communications can be used for a
range of applications where 9.6K Baud, EI Bisync and the PC3000 in Slave mode
is suitable, providing an implementation of an EI Bisync Master is supported on
the remoted device.

A mechanism to enable a remote Master to read and write to, a wide range of
parameters and functions within the PC3000 is provided by EI Bisync protocol.
This includes all Function Block parameters used in a loaded and running user
program, PC3000 system functions and parameters of EI Bisync Slave Variable
function blocks.

3-10

PC 3000 Function Blocks

Default Communications

Using LCM port C, it is also possible to multi-drop a number of PC3000s from a
single RS422 serial link. For example, the PC3000 Programming Station can be
connected via a 261 converter to a number of PC3000s multi-dropped using port C
on the different LCMs; but note that each LCM should be set to a different Slave
address (i.e. GID for EI Bisync).

Addressing parameters

Whenever a user program is created on the PC3000 Programming Station (PS), all
the communications addressable parameters of Function Blocks are given unique
identities. For the default EI Bisync communications, each parameter in a user
program is addressed uniquely by the Unity Identity (UID), Channel Identity
(CHID) and mnemonic. A full description is given in the section on Parameter
Addressing in the 'EI Bisync Slave Driver' description in this chapter.

It is stressed that there is no need to configure any communications function
blocks or set-up any parameters within the user program in order to use the default
communications. When the user program is created on the PC3000 Programming
Station, the user has an option to produce two files '<name>. CEL" and
'<name>.GAT' which define the addressable parameters within the user program.
The <name> part of the file name will vary for each user program. Refer to
'PC3000 Program Station User Guide' for further details on how these can be
produced.

Both address files contain similar information but in a slightly different format.
Each contains a list of function block parameters which exist within a user
program and their individual addresses and date types, i.e. floating point (REAL),
boolean (BOOL) etc..

The 'CEL' file is used for the Production Orchestrator to create a database for
addressing PC3000 parameters. A description of the file format is given in the
appendix.

The 'GAT file is used within ESP and contains a list of PC3000 function block
parameters defined as ESP gates., For further information on the 'GAT file
structure refer to ESP documentation.

PC 3000 Function Blocks 3-11

Default Communications

............... i .CEL |
P v file !
v .
PS e
" GAT
 file :
| PC3000 ESP
[
RS422 . RS232 /
' / \
261
Figure 3-4 Communication with ESP
3-12 PC 3000 Function Blocks

Default Communications

PS

ey

PC3000 PO

| —— —

RS422 . RS232 /
] I / \
261

Figure 3-5 Communication with the Production Orchestrator

Normally, to set-up communications between PC3000 and ESP or Production
Orchestrator, detailed knowledge of the EI Bisync protocol, or of the 'GAT', or
'CEL' file structure is not required, it is only necessary to:

Select a free LCM port A, B. or C. Port B is normally reserved for the
Programming Station.

If the PC (used for ESP or Production Orchestrator) is not equipped with an
RS422 interface, use standard cables, which can be ordered from Eurotherm,
to connect between the port and a 261 and between the 261 and the PC.

Generate either a GAT (for ESP) or CEL (for Production Orchestrator) file on
the Programming Station for the User Program.

Either copy the GAT file to ESP to create ESP screens or copy the CEL file to
the Production Orchestrator cell build toolset.

When the user program is loaded and running, ESP or Production Orchestrator
will be able to address function block parameters in the user program using
addresses supplied by the address file.

PC 3000 Function Blocks 3-13

Default Communications

Note: Whenever the user program is modified, particularly when function
blocks are added or deleted, addresses of parameters of function blocks which
are not EI Bisync 'Slave' blocks, may change. It is therefore recommended that
the new GAT or CEL file is created and copied to ESP or Production
Orchestrator for re-integration. The use of EI Slave Variable function blocks to
avoid doing this, is described in a later section.

Custom applications

In some cases, it may be necessary to develop an application program which
functions as an EI Bisync Master, to communicate with a PC3000. For example, to
create a customised PC based report generator that reads particular parameters
from the PC3000. A PC application with an embedded EI Bisync Master driver
can be speedily developed using a software library available from Eurotherm.
Alternatively, an EI Bisync Master driver can be developed by reference to the 'EI
Bisync Handbook'.

3-14

PC 3000 Function Blocks

Communications Function Blocks

COMMUNICATIONS FUNCTION BLOCKS

There are three types of function block which are associated with communications
and are required if other protocols or additional communications facilities are
needed. Using the Programming Station, these blocks should be created and
configured within a user program in the same manner as any other function block.

Communications Drivers Function Blocks. These are used to allocate a protocol
and establish various characteristics for designated ports.

Slave Variable Function Blocks .Used to provide parameters within a user
program, that require predefined communications addresses. Slave parameters are
accessible by a designated protocol from remote Master devices.

Remote Variable Function Blocks. These are used in association with a port that
can operate as a Master, and provide a mechanism to read parameters or write
parameters in a remote device.

Driver function blocks

A port may be designated for use with a particular protocol by creating
(instancing) a protocol specific communications driver function block.

Protocol Function block type Comment
El Bisync Master El_Bisync M
El Bisync Slave El Bisync_S
JBus Master JBus_ M Supports JBus and Modbus
JBus Slave JBus S Supports JBus and Modbus
Siemens 3964(R) Siemens_ M S Supports both Master and Slave
Toshiba Master Toshiba_M For Toshiba EX250, EX500 and EX2000
Euro Panel Euro_Panel Supports connection to a Euro_Panel display
User defined Row_Comms Permits low level control of the serial port

For a full list of communications drivers for the current version of the PC3000
refer to the 'PC Technical Summary HA022230'.

Assigning a communications function block to a port

Every communications driver function block has a Port parameter which is used to
assign the function block to a selected port. The port assignment is defined as a
string of two characters, where the first character is a number in the range O to 5
representing the PC3000 rack slot and the second character is a letter representing
the port within that slot. For example, '3A' would allocate Port A of the module in
slot 3 of the main PC3000 rack.

The user should ensure that :

PC 3000 Function Blocks

Communications Function Blocks

a) the designated slot contains a hardware module such as an ICM, that can
support serial communications before running the user program and

b) that the particular port has not been allocated to other drivers.

(.

JBus_S
BA " Port
0 ______ .
unit_Id Unit_Id
2400 Baud Status
Ascii Tx_Mode .
Error_no [
Odd ——| Parity
7T — Stop_Bits
No Wr_Protect

- .

LCM

Figure 3-6 Asigning a communications driver function block to a port

Changing communications driver function block parameters

Most communications driver function blocks have input parameters that can be
used to customise the configuration of the allocated port, for example, to change

the baud rate, and parity.

3-16

PC 3000 Function Blocks

Communications Function Blocks

Although these parameters can be changed, they only take effect when the user
program first begins running. Parameters in this category include:

Baud rate

Stop bits

Parity
A user program cannot dynamically change the communications configuration of a
port by changing these types of parameters. However the configuration can be
temporarily changed for test purposes via the Programming Station - see the next

section. For further information on communications driver configuration
parameters, refer to the specific communications driver in this chapter.

Temporarily changing configuration parameters

Some communications function block parameters such as, the Port assignment,
parity, baud rate of a communications driver are normally defined when the
function block is first created. They can also be changed at any time via the
Programming Station when on-line to the PC3000, but the PC3000 system only
takes note of new values of communications function block configuration
parameters when the user program begins running (this includes warm and cold
start-ups).

To temporary change a parameter such as the port assignment for test purposes,
the user program should be halted, the port assignment changed, and then the user
program re-run. For permanent changes, parameters such as the port assignment
should be modified in the off-mode, an the user program compiled and re-
downloaded.

Communications driver function block error detection

Every Communications Driver Function Block has the following output
parameters:

Status When the user program is running this parameter will change from 'Go' to
'NoGo:, if the communications driver detects an error. It is possible that
Status will remain set to 'NoGo' if some configuration parameters are
incorrect, such as having a faulty port assignment.

Error No This parameter is an integer which is set to a value to reflect the type of
error detected. The value used will vary for different protocols. Where
possible, error codes have been used to match those normally used with the
protocol. If there is no error condition, it is set to O i.e. 'OK'. See appendix
for a full list of standard error codes.

If the error condition is transitory, the Status and Error-No will change back to
'Go' and 'OK' respectively, the next time the communications function block is
executed, providing the condition has cleared.

PC 3000 Function Blocks 3-17

Communications Function Blocks

Slave variable function blocks

Slave Variable Function Blocks are used to contain parameter values that can be
accessed using specific communications addresses, via ports that support a
particular Slave protocol. For protocols including EI Bisync, they allow
parameters to be assigned a protocol specific address. Slave Variables are
configured to use a designated protocol and can therefore be accessed from any
port that supports that protocol. Although any number of Slave Variables can be
associated with a particular Slave protocol, they cannot be accessed by different
protocols simultaneously.

Each Slave Variable holds a value or set of values which can be read and written
to by the user program and are also accessible via a designated protocol for
reading and writing by a remote Master device.

/ Slave_Bool

STRING Address Status p—— BOOL
BOOL —— Trig Wrl Error_No g—— SINT
BOOL ~wnunq Value Value BOOL
ENUM weeeee Mode Mode ENUM
BOOL e Refreshed Refreshed BOOL

Figure 3-7 Example of a slave variable function block

Addresses of Slave Variables do not change when a user program is modified. In
contrast, normal EI Bisync addresses used for function block parameters may
change when a user program is modified, particularly when function blocks are
added or deleted. Slave Variables are therefore particularly useful when there is a
need to minimise the changes to parameter addresses in remote Master devices
see chapter 3, section 'Addressing parameters using default communications'.

3-18

PC 3000 Function Blocks

Communications Function Blocks

For example, by using a Slave Variable it is possible to provide a floating point
(REAL) parameter that can be accessed by any port that supports EI Bisync Slave.
The Slave Variable can be given a particular EI Bisync address and mnemonic
such as: Channel='1', Mnemonic='80'".

This parameter can always be accessed using the same address and mnemonic
from any port supporting EI Bisync Slave.

Typically, Slave Variables are used to provide parameter values that can be read
and written by remote devices and supervisory systems, e.g. ESP, Operator
Terminals using JBus, the Euro-Panel.

There are a variety of different Slave Variables to store parameters of different
data types. The types supported include:

Usage Function block type
Single Boolean Slave_Bool
Single Real Slave_Real
Single Integer Slave_Int
Single Time Slave_Time
Single String Slave_Str
Set of 8 Booleans Slv_Bool_8
Set of 8 Reals Slv_Real_8
Set of 8 Integers Slv_Int 8
Set of 16 Booleans read
via communications as
single 16 bit integer
(Stotus word) Slave SW

Assigning addresses and protocols to slave variables

Each Slave Variable has a configuration parameter which defines the protocol and
communications address for the parameter. The address is defined as a string of
characters where the first two characters select the protocol associated with the
parameter and the rest of the string defines the protocol specific address.

The protocol selection characters include:
EB Eurotherm EI Bisync
EP Euro-Panel display
SI Siemens 3964(R)
JB JBus Slave

PC 3000 Function Blocks 3-19

Communications Function Blocks

Refer to the latest 'PC3000 Technical Summary HA022230' for a full list.

Examples of address strings for Slave Variables are:

'EB06Q' - Parameter to be addressed by the EI Bisync Slave
protocol with Channel ID = '0O', Mnemonic -
|60|

The GID and UID are defined by the EI Bisync communications
driver function block.

'EBX1B' - Parameter to be addressed by the EI Bisync Slave
protocol with Channel ID = 'X', Mnemonic =
I:LBI

The GID and UID are defined by the EI Bisync communications
driver function block.

'JB0001' - Parameter to be addressed by the JBus Slave
protocol as register 0001. The JBus Unit-
Id is defined by the JBus communications
driver function block.

Refer to the specific communications driver function block descriptions for details
on protocol address conventions. In some cases, certain addresses are not
permitted. For example, with EI Bisync, a channel should always be given, the
first character of a Slave Variable mnemonic should be a digit the range '0' to '9',
Slave Variables are always addressed using UID ='0' or 'P' if addressed from ESP.

The Address parameter cannot be changed while the user program is running and
in this respect behaves as other communications function block configuration
parameters, - see section: "Temporarily changing configuration parameters'.

Figure 3-8 shows:
a boolean Slave Variable with channel identity = '0', mnemonic = '60’,
an integer Slave Variable with channel identity = '0', mnemonic = '62',

- both can be addressed via each EI Bisync driver, via port 'OA" using GID =
'0', UID ='0" and via port '1B' using GID ="'1", UID ='0'".

an integer Slave Variable which can be addressed as register '0001' by a JBus
Slave protocol via port '0C".

3-20

PC 3000 Function Blocks

Communications Function Blocks

'"EBO60" —

'EBO62"

TBOOQL " Address

/ Slave_Bool

Address

Value Value

f Slave_Redl

Address

Value Value

4 Slave_int

-| Value Value

-

El_Bisync_S

PC3000 Rack

/ JBus S

Unit_ID

Figure 3-8 Slave varioble usage example

PC 3000 Function Blocks

3-21

Communications Function Blocks

Listing slave variable addresses

The Programming Station provides an option to produce a file containing a list of
Slave Variables with communications addresses for a selected protocol. This can
be useful for example, when configuring a display terminal such as CRT9M (9
inch monochrome) or CRT12C (12 inch colour) using JBus where there is a large
number of Slave Variables with numeric addresses to remember.

The file generated is called '<name>.ads', where '<name>' varies for different user

programs.

Control of slave variable function blocks

All Slave Variable Function blocks have a standard set of parameters which

include:
Mode

This can take the following values: Rd-Wr - which allows the Slave
Variable value to be read or written to over communications, Rd-Only,
which inhibits remote communications from writing to the Slave
Variable and Wr_Once which allows the Slave Variable to be written
once but thereafter further writes are inhibited. Wr_Once is used to
ensure that a remote device will not overwrite a value written to a
Slave Variable before the user program has had time to deal with it.
The mode changes from Wr_Onceto Rd-Only when a write to the
Slave Variable is complete.

Trig_Wrl This is a boolean parameter which on being changed from Off to On

causes the Mode parameter to change to Wr_Once. It should only be
driven from a source derived by softwiring, such as a digital I/O input.
It should be switched back to Off to be re-used again. This parameter
can be used as part of an interlock to regulate writes to the Slave
Variable from a remote device.

Refreshed This boolean is set to Yes whenever a new value has been written to

Status

the Slave Variable by a remote device; it can also be cleared by the
user program. The main use is to signal to a user program when a new
value has been written to the Slave Variable by a remote device.

An output boolean parameter that can either by Go or NOGO to
indicate that an error has occurred while running with the Slave
Variable.

Error_No The output integer parameter changes from 0 (OK) to an error code

value whenever the Status is changed to NOGO. Because the error
code is set by the associated protocol Communications driver, the
Communications Driver Function Block description should be
consulted for a full description of error codes. An error code value of
255 indicates that the Slave Variables has not been initialised and
could imply that an incorrect protocol selection characters have been
given in the Address parameter. See appendix C for a full list of
standard error codes.

3-22

PC 3000 Function Blocks

Communications Function Blocks

Interlocked access

With many applications it may be acceptable for the value of a Slave Variable to
be overwritten by the remote Master device before the current value has been
processed by the user program, or for a new value to be locally written to be Slave
Variable before the remote device has read the last value.

However, there are situations where the exchange of data from the remote device
should ensure that every value is transferred and acknowledged by the user
program. This can be achieved by using a flag Slave Variable as an interlock.
Figure 3-9 depicts a typical situation where a remote device is sending a stream of
values to the user program via Slave Variable Vall The user program ensures that
only one remote write is possible before processing the new value written to Vall
by changing the mode to Wr_Once. Although the mode Wr_Once will block the
remote device from overwriting the value, it will also cause a communications
error to be reported within the remote device if a new value is written. A better
arrangement is to use a second Slave Variable as an interlock. The user program
sets the Flag to signal that a new value can be written. The remote device then
polls the Flag and when set, is free to send the next value.

PC 3000 Function Blocks 3-23

Communications Function Blocks

aulnO wniBouy uolodljddy ajoway

uQ ies o} Boj4 o} S

BN|DA [XOU SUj} DJlIM O} 9DIASP

sjowal o} |pubis o} Bo|4 103D :
ajlum a|Buis Joypng o Mo||y -
paysayay 109D

PaAIadal aN|DA MaU SS@d0U .

LIOA OF SN[DA MBU BIIM &

anuy s1 IndinQ paysauay

US|{luM uaaq soy -
9N|DA MBU D Uaym | "o’l

aulinO wniBouy Jesn

‘(HOx)0=:en|PA B4
!92UQ M =: OPOW' | |PA
“HO =: payseuay’ | [PA
fan|oA" [|PA=:|PA IDAIBSN

Boy4
[oog eAD|S

wpJiBo.ud uoyodijddy
221A9(] Sjoway

Jajsoyy

Huy
|PLI9G ‘Swwo)

LIPA

INTEETNTTN

wp.iboud Josn

Figure 3-9 Example of interlock arrangement

PC 3000 Function Blocks

3-24

Communications Function Blocks

Slave variables timing constraints

If the communications driver function block is assigned to a faster PC3000 task
than the Slave Variable function block, some side-effects may be observed.

The following situation may arise. When the remote device sends data to be
written to a Slave Variable, the communications driver writes the data to an
internal buffer within Slave Variable function block. The data is not written to the
Value output parameter of the Slave Variable until the task to which the Slave
Variable is associated, executes. Consequently, if a fast responding remote device
writes to a Slave Variable and then attempts to immediately read back the value
before the Slave Variable has updated, the remote device may unexpectedly read
back the older value from the Slave Variable and not the value just written.

Further write attempts to a Slave Variable, that occur before the internal buffer has
been transferred to the Slave Variable output will be blocked and will cause the
communications driver to return a negative acknowledgement (NAK) for each
attempt. If the Slave Variable is in the write once mode Wr_Once, the internal
buffer will hold the first write value and cannot be overwritten by further writes.
However, the new value held in the internal buffer will not be copied to the output
of the Slave Variable until the Slave's task executes.

Slave variables worse case timing
The worse case delay between receiving a serial message from a remote device to
write to a Slave Variable and it appearing on the output of a Slave Variable is:

= task interval for the Communications Driver function block + task
interval for the Slave Variable function block

PC 3000 Function Blocks 3-25

Communications Function Blocks

Task A Task A Task A Task B

A A A A

Further writes

- blocked .

|
Remote Write Message Comms. driver Function Block Slave Variable FunctionBlock
Received as a stream of transfers value from received Block copies internal value to
interrupts message to Slave Variable's internal value output parameter
buffer
Note: Commes. driver Function Block associated with Task A

Slave Variable Function Block associated with Task B

Figure 3-10 Delays associated with updating a slave variable

For example, with the Communications Driver and the Slave Variable both
running in a 10ms task, the worse case time between receiving the last character of
a serial message and the decoded value appearing on the Slave Variable Value
output parameter will be 20ms.

The worse case delay between a user program writing a new value to a Slave
Variable, and the value being available to be read over communications from a
remote device is:

= task interval for the Communications Driver function block

Note that the worse case end-to-end times between the remote application program
and the user program should also include the serial communications transmission
times which will vary with the Baud rate, and inter-character and message
latencies of the remote device.

3-26 PC 3000 Function Blocks

Communications Function Blocks

Remote variable function blocks

A variety of Remote Variable Function Blocks are provided to read from, and
write to parameters of different data types in remote devices. Remote Variables
can only be used with ports the support protocols that function in the Master mode,
such as EI-Bisync-M,JBus-M and Siemens-M-S.

Typically Remote Variables are used when the PC3000 is Master of a serial link from
which a number of devices such as Eurotherm 900 series instruments are multi-dropped.
In such cases, Remote Variables can be used to read and write selected parameters within
any of the instruments.

Each Remote Variable is configured using an address string that defines the port to
be used, the Slave address of the remote device connected to the port, and the
address of the parameter within the remote device.

The facilities provided by each Remote Variable Function Block are controlled
using a standard set of parameters and include:

On demand a single read of a remote parameter

Continuous reading, i.e. polling of a remote parameter; the duration between
reads can be specified.

On demand, a single write to a remote parameter
Measurement of the actual elapsed time between continuous reads or writes.

A time stamp for the last successful read or write.

/ Remote_ Bool

STRING —— Address Status
ENUM — Mode Error_No
BOOL Trig Read Elapsed
BOOL —1 Trig Write Time_Stamp
TIME — Refresh Value
BOOL — New_Value

ENUM -—---- State

Figure 3-11 Example of a Remote Variable function block

PC 3000 Function Blocks 3-27

Communications Function Blocks

There is a variety of different Remote Variables to interface to remote parameters
of different data types. The types supported include:

Usage Function Block Type

Single Boolean Remote Bool
Single Real Remote Real
Single Integer Remote_nt
Single String Remote_Str
read via coms as single

16
bit integer (Status word) Remote-SW

Refer to the latest 'PC3000 Technical Summary HA022230' for a full list.

Assigning Addresses to Remote Variables

A Remote Variable can be associated with a parameter in a remote device by
defining a value for the Address parameter. This should be a string where the first
two characters define the PC3000 port and the rest of the string defines the
protocol specific address. In some cases, extra characters are added to the end of
the address string, to provide extra information such as, the format used to transmit
the parameter over the serial link. The port selection uses the same convention as
used with Comms. Driver Function Blocks, see section 'Assigning a Comms.
Function Block to a Port' where first and second characters define the PC3000 rack
slot and port respectively.

Examples are:
'OAQL11PVE!
Addresses Port A of the ILCM (slot 0), -

assuming the port is allocated to a EI Bisync Master
communications.

Function Block (EI-Bisync-M),

then the rest of the address implies:

GID = 0, UID = 1, - defines Slave device address
Channel ID = 1, Mnemonic = 'BPV',

- defines Parameter address

-format f - defines the Bisync format used to transmit the
value.

'1B011234IR1"

Addresses Port B of a communications module in slot 1, -

3-28

PC 3000 Function Blocks

Communications Function Blocks

assuming the port is allocated to a JBus Master
Communications.

Function Block (JBus-M),

Then the rest of the address implies:

Unit-id = 01 - defines JBus Slave device address
Register address = 1234

I - defines Input address space

format R1 - defines a JBus format

For details on the protocol specific part of the address, refer to the appropriate
Communications Driver Master Function Block description. Figure 3-11 shows:

A Boolean Remote Variable addressing port '0A' which has been allocated to
the EI Bisync Master protocol. The address selects a Slave device with
GID=0, UID=1, and a parameter with mnemonic = 'HD' using the default
format. There is no channel identity.

A floating point (REAL) Remote Variable addressing port '1B' which is
allocated to the EI Bisync Master protocol. The address selects a Slave device
with GID=0, UID=0, and parameter with channel identity = '2' and a
mnemonic = 'PV' using the format '1".

An integer Remote Variable addressing port '0C' which is allocated to the JBus
Master protocol. The address selects a Slave Device with Unit-Id ='020', and a
register at address '1000' using format 'R’'.

PC 3000 Function Blocks 3-29

Communications Function Blocks

Remote_Bool }, El_Bisync_M
"OAOTHD" Address Port

Remote_Real } El_Bisync_ M

"IBOO2PVIL . 54ress Port

PC3000 Rack

]
\Ir\>=
Tl

]
I
J

LCM ICM

Remote_Int

Figure 3-12 Remote variable usage example

Changing remote variable addresses

Address string of a Remote Variable can be changed at any time by the user
program and the new address comes into effect the next time the Remote Variable
executes. This provides a very flexible system where it is possible for a single

3-30 PC 3000 Function Blocks

Communications Function Blocks

Remote Variable to be used to address different parameters of the same data type
on different ports and using different protocols.

For example, by changing the address, it is possible to read the Process Value PV
from a number of multi-dropped instruments on a number of ports.

e.g.: addresses to read the PV for four instruments, 2 multi-dropped
off each of ports 1B and 1C.

'1B01 PV'
'1B02 PV'
'1C01 PV?
'1¢c02 PV!

Control of remote variable function blocks

When in a 'read’' mode, the Value parameter will contain the last value read from
the parameter in the remote device.

In a 'write' mode, the value held by the New Value input parameter is written to
the remote parameter. If the write operation is successful, the Value parameter is
updated to match the New Value parameter.

In general, the Value parameter will hold the value last successfully written to or
read from the remote parameter. However, if no successful read or write operation
has ever occurred, the Value parameter should be ignored.

Al 1l Remote Variable parameters have a set of parameters to control the various
modes of operation, these include:

Mode
This specific basic operational mode which can be:

'Demand' mode - allows a remote read or write can be triggered by changing the
State to Write or by the Trig_Read or Trig_Write parameters changing
from Off to On.

'R_Cont' mode - allows a remote parameter to be continuously read (polled) at a
regular period defined by the Refresh TIME parameter.

'W_Cont' mode - allows a remote parameter to be continuously written to, at a
regular period defined by the Refresh TIME parameter.

'Change' mode - causes the remote parameter to be written to when the value of the
New Value input parameter does not match the Value parameter. This
mode can be used as an alternative to the write continuous mode when
a reduction in the number of communications transactions is desirable,
because writes that attempt to send the same value are avoided. The
minimum elapsed time between changes being transmitted to a remote
device is given by the Refresh time. If an error occurs, the write will be
repeated at a regular period defined by the Refresh TIME parameter.

Trig_Read, Trig_Write. These parameters should be used when it is necessary to
trigger a single read or write on demand from source derived by soft-

PC 3000 Function Blocks 3-31

Communications Function Blocks

wiring. For example, a digital I/0 input could be soft-wired to either of
these parameters to trigger a read or write from an externally generated
digital pulse. They should not be written to using ST in a Sequential
Function Chart (SFC) (see State parameter).

Refresh

This TIME parameter defines the period between communications
transactions for the continuous read or write modes. See Mode for
other uses of this parameter.

State

This in an input/output parameter that can have the following values:
OK, Pending, Error, Write, Read.

The output State parameter can take values: 'Pending' while a
transaction has started, and is awaiting completion, usually while
waiting for a remote Slave device to respond, 'Ok’ when a successful
transaction has completed or before any transaction has been made, and
'Error' when a transaction has failed for some reason (see Error-No).

The input State parameter can be written to in an SFC to make the
Remote Variable to perform various functions. Setting the State
parameter to 'Write' will trigger a single write of the value of the
current New Value parameter to the Remote device irrespective of the
current selected mode. For example, if Mode is 'R Cont' for continuous
read, setting State to "Write' will trigger a single write between the read
transactions. similarly, setting State to 'Read’ will always trigger a
single read transaction. The State parameter will always trigger a single
read transaction. The State parameter will remain as "Write' or 'Read’
until the next execution of the Remote Variable function block when it
will change to 'Pending' if the transaction can be initiated successfully,
otherwise it will change to 'Error'.

Setting State to 'Ok’ will cause any current transaction to be aborted.
For example, if a write transaction is waiting for an acknowledgement
from a remote device, forcing the State parameter to change from
'Pending' to 'Ok’ will cause the acknowledgement message to be
ignored when it is received. Setting State to 'Error' can be used for test
purposes when no transactions are pending, to simulate an error
condition; the Error No is set to 255 on the next execution of the
Remote Variable Function Block in this case.

Error-No This is an integer that identifies an error condition, O implies
'Ok’ other values are set if the State parameter is 'Error'. A full list of
standard error codes is given in the appendix C.

Elapsed

A TIME parameter that gives the elapsed time since the last read or
write modes; in other modes it's value has no significance. If the
Elapsed time is significantly longer than the required Refresh period,

3-32

PC 3000 Function Blocks

Communications Function Blocks

this may indicated that either the Remote device, the serial link or the
PC3000 system cannot handle communications transactions at the rate
required. If the transaction times-out because no response is received,
the Elapsed time is set on the termination of the transaction.

Time_Stamp This defines the time and date at which the last read or
write transaction completed successfully. It is updated when the
Remote Variable function block executes and is set coincident with the
State parameter changing to 'Ok'.

Status

An output boolean parameter that can either be GO or NOGO to
indicate that an error has occurred while running with the Remote
Variable.

PC 3000 Function Blocks 3-33

Communications Function Blocks

Example using remote variable

User Program Remote Device

Remote_Int Application Program

Vali Comms. Serial
link

_ Vall.Mode := 0 (*Demand);
Vall.Address:-'0A00SP';

' Set Remote Variable made to Demand
“ Address SP of instrument GID=0,
UID=0 on port OA

Null transition used to separate initialisation
from main " write"step

. Val1l.New_Value :=Setpoint.Val; Set up new value to be written to SP
. Val.State :=3 (*Write*); .~ Set State to "Write" fo initiate write

T T SO0 WG“‘ for SfCﬂ‘e 1,0 Chdhge 1,0 OK

Val.State :=0 (*Ok*); to indicate that successful write

TR and acknowledgemen’r from
instrument

Test for all other error
conditions

User Program Outline

Figure 3-13 Using a remote variable example

Figure 3-13 shows in outline part of SFC needed to write a new Setpoint value to a
remote instrument. Note that only the address is specific to a particular protocol
the rest of the code will be identical for different protocols.

3-34 PC 3000 Function Blocks

Communications Function Blocks

auipnO wnaboud 4asn

‘|oA"O4ul B|QOLIDA Josn ul pjay s! BuLys uonpwioyu|

‘pessadoud usaq soy abossaw ayy usym
Jspwpind Joyd bas sy} seyopdn ad1Aep sjoway 80N

anpAIDYY bag = (jppA‘eduanbag=: N|) 119SV OL dVHD

*J1920.4DYD 9dusnbes
oy} o4opdn o} 921A9P 94O IO} HIDAA

(L2HIM.) £=: 9ibjg aBpSsaW
!(IpAoyu] : ZNI
‘(IpA"@duanbag=: NI)JdVHD OL 11DSVY=: LNI

"92IASP 9Ol O} BJIM, S4OIIU]
‘pPo8Y o Jap0IDYD dduUsNbas yum
abossaw ay} jonysuod uay] ‘paydoal
s1,Z, usym punou doum ‘Japoioyd
@ouanbas pxau sy} apo|nd|OD

((+¥.4) LP=2 LNI
‘L+ |PA9duUanbag=: gNI
(1Z:x)06=<[PA'@duanbag=:9) INIQ 73S =: [PA"92uanbag

abossayy

Huy
|PLI9G *Swwo)

wpJiBo.ud uoyodiddy

IA9(] Sjoway woibo.y Jesn)

9AD|S 19iSPW

ANV (104) 0 = 2i0ig abBnssoy —— ——

) LYDNOD=: an|pA” MoN'oBpssay —|

apow ,poaJ, SNONULUOD Ul S| 3|gPLIDA 9joWay by Bag
‘apow pupwap Ul SI 9|gPLIDA 9joway abpssayy

aoyy bag
uLlg ajoway

abnssay
uLis 90wy

Figure 3-14 Interlock access to a remote device example

3-35

PC 3000 Function Blocks

Communications Function Blocks

Interlocked access to remote device

With some applications it is important that every message is received by a remote
device i.e. there is no possibility that a message can be overwritten before being
processed by the remote device. One arrangement for this is shown in the figure 3-
14 'Interlocked Access to a Remote Device Example'. The information is
assembled into a string that is written to a parameter within the remote device. A
character is added to the head of the string as a sequence number. Each new string
transmitted is prefixed with the next character in a defined sequence, e.g.
A,B,,.X,Y,Z,A,B etc. The sequence wraps round to A on reaching Z.

The PC3000 has two Remote Variables, one to write the information string and the
other to read back the sequence character which is updated by the remote device
when the message has been processed. The sequence character within the remote
device is polled by the PC3000. When it matches the sequence character used in
the last string, new information can be transmitted.

Remote variable worse case timing

Assuming that there are not other Remote Variable transactions queued, the worse
case delay between writing to Remote Variable within a user program to initiate a
communications transaction and detecting the completion of that transaction is:

= task interval of the Remove Variable Function Block +

task interval of the port communications Driver Function
block +

conmunications serial link transmission time to Remote
Device +

Remote Device processing time +

conmmunications serial link transmission time back to PC3000
+

task interval of the port Communications Driver Function
Block +

task interval of the Remote Variable Function Block

For example, to read a Process Value (PV) from a 905 series instrument using a
Remote Variable assigned to 20ms task, a EI Bisync master communications
function block assigned to 10ms task, using a serial link running at 9600 Baud will
have a worse case latency of:

= 20ms +
10ms +
10ms+

2ms +

3-36

PC 3000 Function Blocks

Communications Function Blocks

8ms +
20ms +
10ms+
80ms

Queuing remote variable transactions

It is possible to initiate a number of Remote Variables to make transactions on the
same port within a short period of time. Each communications driver function
block that supports Master mode operation has an internal queue to hold
outstanding transactions from Remote Variables. Typically a driver can hold up to
100 outstanding transactions but refer to the specific communications driver
function block description for the exact queue size. The Queue_Space output
parameter for the communications driver function block can be used to monitor
the space available.

Transactions are queued on a first come, first served basis. Note that there is no
specific queue order for transactions for Remote Variables to the same port that
are initiated within the same SFC execution, for example, within the same SFC
Step and that only one transaction can be queued at a time for a particular Remote
Variable.

Serial communications drivers currently provided are unable to overlap
transactions, therefore each transaction has to complete, i.e. a communications
message should be received from a remote device and passed to the associated
Remote Variable, before the next transaction can be started; the queue space used
for the completed transaction is freed.

If there are transactions already queued, the turn-around time for a fresh Remote
Variable transaction includes the time to complete all the transactions already in
the queue.

PC 3000 Function Blocks 3-37

Communications Function Blocks

/ El_Bisync_M

Port

Queue_Spage

/ Remote_Bool

:

§ Driver is currenly

| processing the
transition of the
head ofthe queue

0201 HD "— Address
State State
Internal
Transaction
Queue
4 Remote_Real Free Queue
Space
" 0K 2PV — Address
______ State State "padig"
A new transitionis added
to the end of the queue
/ RemoteReal
"0 2BV — Address
______ State State ____Illwri-tle

Figure 3-15 Queuing transactions from remote variables

Queue space problems

If there is no queue space available for a new Remote Variable transaction, the
Remote Variable will continually retry the transaction until space is available. This

will increase the transaction turn-around time.

3-38 PC 3000 Function Blocks

Communications Function Blocks

To detect communications delays due to this condition, the User Program should
monitor the communications driver Queue Space parameter and if the queue space
is low, take corrective action to reduce the communications traffic on the
associated port, for example, by increasing the Remote Variable Refresh period for
continuous Reads or Writes.

The Queue Space value can be used to indicate problems with a particular serial
link or with a remote device. If the queue space rapidly decreases, this implies that
communications transactions are taking longer to complete than usual. This may
be because communications transmission errors are being detected and certain
messages need to be re-transmitted, or because a particular device cannot respond,
so transactions to it are being cleared by the driver time-out mechanism.

Raw communications block

The Raw_Comms driver function block is provided for applications where it is
necessary to have low level control of the communications port and require the
flexibility to construct or analyse messages exactly as transmitted or received over
a serial link. Because there is no protocol, no extra messages or message formats
are created by the driver.

Just as for other communications driver function blocks, the Raw_Comms block
can be assigned to any serial port using the Port input parameter (see section
'Assigning a Communications Function Block to a Port').

Raw-Comms provides a wide range of low level facilities including:
Direct access to the message transmitted or received over the serial link.

Independent control of message transmission and reception including separate
baud rate selection on transmit and receive lines.

Message flow control using Clear to Send (CTS) and Request to Send.(RTS)
See note 1.

Selectable echoing of received characters when required.
User selectable delete sequence for character deletion in the receive buffer.

Developing user programs to operate with Raw_Comms is more complex than
using the protocol driver function blocks because the structure of messages and
timing will all need to be handled by the program.

Note that it is not possible to use Slave or Remote Variables with
Raw_Comms.

For a full description, refer to the 'Raw Communications Driver' document.

Raws Comms usage
Typical applications for the Raw_Comms driver function block include:
Communications with devices using simple non-standard protocols,

Sending reports to serial line printers or to special purpose printers, for
example, for label generation.

PC 3000 Function Blocks 3-39

Communications Function Blocks

Communication with character based terminals such as DEC VT100 or with
simple display devices.

Note 1 This is not currently supported on LCM or ICM ports

Euro-Panel driver function block

A special slave communications driver function block is provided to handle the
interface with a Euro-Panel, a 2 by 40 character display with numeric keypad and
function keys. The Euro-Panel function block manages all the low level
communications messsage dialogue with the display, so that creation of user
specific messages, display fields and data entry fields is easy to program. Although
the Euro-Panel uses RS422, only one panel can be assigned to any RS422 port.

The format of messages displayed on the Euro-Panel is defined by a set of format
parameters. These are input parameters to which strings of characters can be
assigned to define the format of message, input fields, numeric display formats etc.
using a simple display format language called Operator Interface Formatting
Language (OIFL).

The Euro-Panel display is the master of the RS422 serial link. Slave variables can
be associated with one or more Euro-Panel driver function blocks by using the
protocol selection characters 'EP' in the Slave address. (see section 4 'Assigning
Addresses and Protocols to Slave Variables'). The rest of the Slave address is used
to assign a unique name to be used by the Euro-Panel driver within the format
strings, this can be any alpha-numeric string (including underscore’_"). The value
of a Slave variable assigned to a Euro-Panel is automatically displayed on the
panel, if it is referenced in a format string.

Example of Slave Variable addresses used with the Euro-Panel
'"EPpvl’

' EPmaxtenp '

EPpunp'!

These can be displayed using format strings assigned to the Euro-Panel driver.
Examples are:

"'PV 1 is:', pvl!
''"Max temp: ', maxtemp:7.2'
'@10:1, 'Pump', pump (Off,Vacuum,Purge)'

The display format strings can be changed dynamically during user program
execution, so that menu lists and parameter lists can be changed in response to
function keys on the panel.

Refer to 'the Euro-Panel Driver' function block description for details on the
capabilities and programming the Euro_Panel display.

3-40

PC 3000 Function Blocks

Problems and Solutions

PROBLEMS AND SOLUTIONS

This section lists some common problems with serial communications and are
given for general guidance; the list should not be regarded as comprehensive. In
the first instance, identify the Error No of associated communications function
blocks. A full list of error codes is given at the end of each communications driver
function block description.

a) Problem - Basic communications between a remote device and PC3000
cannot be established.

Check the following:

The cable is correctly connected, check the polarity of the Receive and
Transmit lines. With RS422 check that all tee points are connected
correctly. With RS232, check that the common line is connected end-to-
end and if required, that the appropriate modem control signals are
simulated for the remote device.

The Baud rate, Stop bits set up for the communications driver match those
expected by the remote device.

The protocol of the communications function block matches the remove
device,

Check that there is a single master device for protocols that require a single
master with slaves, i.e. either the PC3000 or the remote device is the
master.

b) Problem - A remote device cannot read or write to a Slave Variable.
Check the following:
Slave address is assigned to a known protocol

A communications function block for the selected slave protocol has been
created,

The communications function block is assigned to the same port as
connected to the remote device,

The correct slave address is being used by the remote master device

If a write to the Slave is failing, check that the slave mode permits write
transactions, and that the communications driver function block has any
write protect parameter such as Wr_Protect set to No.

C) Problem - Remote Variable cannot communicate with a remote device:
Check the following:

The Remote Variable addresses a port associated with a communications
driver function block that supports a protocol that operates in master mode,

The correct port for the remote device is addressed,

The correct address string is given for the parameter within the remote
device, (With EI Bisync devices ensure that the correct channel character is

PC 3000 Function Blocks 3-41]

Problems and Solutions

d)

given, if the device does not use channel numbers ensure that a space
character is given for the channel character).

The correct format character has been postfixed to the address for the
remote device parameter,

That each remote slave device has a unique slave identity, for example,
with EI Bisync each remote instrument has a different GID.

Problem - A communications system may involve connecting numerous
multi-dropped instruments to the PC3000 on a single serial link. During
commissioning, some of the instruments may not be present or may not be
powered-up. A common requirement is for the user program to use Remote
Variables to poll parameters in each of the instruments. However, with
some instruments not present on the serial link, transactions to the missing
instruments will take much longer to complete since the driver will wait for
a time-out and then retry each failed transaction. This will considerably
slow down the communications transaction to the other instruments and
may cause the driver's queue space to decrease.

Solution - The user program should test the Status and Error _No on each
Remote Variable to check for a time-out condition. The Status will be set
to NOGO and the Error_No will be a non-zero value according to the
appropriate error code for time-out condition. The actual error code value
will depend on the communications driver being used.

On detecting a Remote Variable transaction that has timed-out, the
Refresh time for repeating read or write transactions with missing
instruments should be lengthened. When the Status returns to Go i.e.
indicating that the instrument is again present, the Refresh time can be
returned to the normal value. This can be achieved using soft-wiring to the
Remote Variable function block, such as:

remotePV.Refresh:= SEL._TIME (G:= remotePV.Status <> 1
(* GO *),

INO:= normRate.Val,
INl:= failRate.Val) ;

Where remotePV is a Remote Variable Function block, and normRate and
failRate are user variables containing the normal an failure mode refresh
times.

Problem - it is not always possible to fully test a user program with
communications without having fully functional external communications
devices.

Solution - Because the PC3000 supports both Master and Slave protocols
in some cases it is possible to simulate the external devices using the
PC3000 itself. For example, an external JBus master device can be
simulated by creating Remote Variables associated with a JBus-M function
block on a spare communications port. This can then be connected to the
port under test.

3-42

PC 3000 Function Blocks

El_Bisync_ M

COMMUNICATIONS
EI_BISYNC_M FUNCTION BLOCK

EI_Bisync M
STRING

Port
ENUM

TIME

SINT Max Retries

BOOL

alalalals

Fnable 82X

-

Baud Error No -

Time Out Queue_ Space

BOOL

SINT

SINT

Figure 3-16 El_Bisync_M Diagram

Functional Description

The El_Bisync M Function Block supports serial communications on a
designated serial communications port using the El Bisync ASCII protocol. This
function block configures the serial port to function in Master mode. Detailed
knowledge of the Bisync protocol is not normally required to use this function
block. However, you may refer to the El Bisync Communications Handbook for

specific details if requ

ired. Before reading this description, you are advised to

gain a general understanding of the PC3000 communications system by reading

the PC3000 Communications Overview.

This function block will be required when designing or programming the
PC3000 to use the EI Bisync protocol to function in master mode, i.e. for a
PC3000 serial communications port connected to one or more EI Bisync Slave

devices, such as 900 Series discrete controllers.

Function Block Atiributes

YDt 8 40

Class: ..covevceereeeeeceeeeeceeee e COMMS

Default Task:cccceevuneennnnee Task_1

Short List: ceueueevrieeeeeeireeeieereees Port Status Queue_Space
Memory Requirement:.............. 2054 Bytes

Execution Time:cc.......... 20 u Secs

PC 3000 Function Blocks

3-43

El_Bisync M

The EI Bisync Master (EI_Bisyne_M) driver block deals with the protocol
specific details of the EI Bisync communications and is supported by the
generic Remote Variable function blocks. The Remote Variable blocks are
linked to the driver by means of a protocol specific address and can request the
polling or updating of parameters of a communicating instrument via a
specified communications port.

Note: Only the ASCII version of the EI Bisync protocol is
supported.

Parameter Description

Driver Configuration Parameters

The EI_Bisync_M block has several configuration input parameters which
define various aspects of the driver and should be set prior to running the user
program. Changing these parameters while the user program is executing will
have no effect on the driver, except under special circumstances - see 'PC3000
Communications. Overview' section ' Temporarily changing configuration
parameters'.

Port

The Port parameter is the two character address of the port on which the EI
Bisync protocol is to run. The first character is a number from O to 5
representing the rack slot and the second character is a letter representing the
port within that slot. e.g. '0C' would be port C on the LCM and if there were an
ICM in slot 3 '3A' could refer to its top port.

Baud

The Baud parameter gives a choice of 11 different rates from 75 baud up to
115.2 kbaud (as shown in Table 3-1 with a default of 9600 baud. Note that not
all ports will be able to support all baud rates. This will be indicated by an error
when the function block is first run (see description of Error_No).

Time_Out

The Time_Qut parameter specifies the length of time that the Bisync Master
will wait for a response message to a transmitted request. After this time the
driver assumes there was a transmission error and the request may be
retransmitted or an error returned to the Remote Variable function block which
initiated the request. Time_QOut defaults to 5 Seconds.

3-44

PC 3000 Function Blocks

El_Bisync_ M

Enum Value Baud Rate
0 75
1 300
600
1200
2400
4800
9600
19200
38400
57600
115200

Table 3-1 El_Bisync._ M Baud Rates

O (0| N[MWD

—_
o

Max_Retries

The Max_Retries parameter specifies the number of times that a request will be
retransmitted if a transmission error, such as a timeout or a message checksum
error, is detected. If a valid response is not received after this number of retries
an error is returned to the remote parameter block which initiated the request.

Max_Retries defaults to 2, so a request will be sent three times before an error
is reported and the request aborted.

Enable 82X

The Enable_82x parameter is set to allow communication with the 82x family
of instruments, eg 825.

These instruments require an extra stop bit.

Note: this should only be used when there are 82x instruments connected to the
port since it will reduce the communications rate by 10 .

Driver Status Parameters

The driver status is indicated by three output parameters in the EI_Bisync M
function block.

Status

The Status parameter is a boolean indication of the state of the link controlled
by the driver. If there are no problems with the link this parameter reads Go,

PC 3000 Function Blocks 3-45

El_Bisync M

but when an error occurs , the Error_No parameter indicates the reason for the
problem.

Error No

The Error_No parameter indicates the reason for any errors with the link. If
the link is functioning correctly, Error_No will be 0 (OK). For full details of
error codes see the section on Error Reporting.

Queue_Space

The Queue_Space parameter indicates the amount of space left in the queue for
remote parameter operations. If this reaches zero then it implies that the link
bandwidth is not sufficient to cope with the number of Remote Variable
requests being made and data will be lost. If this situation arises the parameter
polling rates should be reduced.

Remote Variable Operation

The requests made by the PC3000 are controlled by one or more Remote
Variable blocks which can initiate read and write requests via a driver that
supports the Master mode of operation.

The EI_Bisync_M driver currently supports the Remote_Bool, Remote_Real,
Remote_Int, Remote_Time, Remote_Str and Remote_SW block types.

Addressing

It is necessary to set up a protocol specific Address in the Remote Variable
block which is the address used to access the remote devices. An example
address format is shown in Figure 2. The port field is defined as in the function
block Port parameter as a rack slot number followed by a letter for the port
within that slot.

The protocol specific part of the address begins with a slave identify (ID) which
specifies the address of the slave device which should respond to a request.
This consists of two characters, the Group Identifier (Gid) and the Unit
Identifier (Uid). The range of both the Gid and Uid is '0' (30h) to 'o' (6Fh).

These are followed by the Channel Identifier (Chid) which is in the range
SPACE (20h) to' ' (7Eh). If set to SPACE this indicates that no Chid is to
be sent to the slave instrument.Next is a two character mnemonic (MnO Mn1),
each character can be in the range '!' (21h) to' ' (7Eh).

Finally, zero, one or more format characters indicate how the data field is to be
encoded. This is required because the Ei Bisync standard provides a number of
different encodings for the same data type. Multiple format characters are only
used when the Remote Variable is multi-element, in which case all fields of the
same type are encoded in the same way. If no format character is present,
default encoding is used. The formats are defined in the following section.

3-46

PC 3000 Function Blocks

El_Bisync_ M

0A 01 1 PV f

—— —— —— —— ——
Port Slave ID Channel Mnemonic Data Format

Figure 3-17 An Example Remote Variable Address

The Address parameter of a Remote Variable function block may be changed at
any time so the block may be re-used to communicate with different
instruments and different parameters. It is not recommended that it is changed
when the function block's State parameter is 'Pending', i.e. a request is
outstanding.

Data Formats

This section describes the different data encodings that can be selected for each
basic data type. The format character, which is part of the Remote Variable
block's address string, specifies to the driver block which encoding is to be
used.

Floating Point (REAL)

The Remote_Real function block provides access to a single floating-point
parameter on a slave instrument.

Format Description
P 24-bit |IEEE Packed DEFAULT
P 32-bit IEEE Packedt
F Free ASCII, 8 characters maox.
f Free ASCII, 6 characters max.
J Free ASCII, 6 characters max. TCS Floating Format, 1st
Char. not ".! nor '
0 TCS Fixed Format, XXXX. or XXXX-
1 TCS Fixed Format, XXX. X or XXX-X
2 TCS Fixed Format, XX. XX or XX-XX
3 TCS Fixed Format, X XXX or X-XXX
4 TCS Fixed Format, XXXX or -XXXX
Q SSD 64-bit Format

Table 3-2 El_Bisync_M Floating Point Formats

PC 3000 Function Blocks 3-47

El_Bisync M

Note:-1The 32 bit format is not currently supported.

Integer

The Remote_Int function block provides access to a single Signed Integer or
Status-Word parameter on a slave instrument. The Remote_SW function block
packs/unpack the value from/to sixteen Boolean parameters.

Format Description

Free, O to 8 Hex Characters (32-bit maximum)| DEFAULT

8-bits, 2 Hex Characters

16-bits, 4 Hex Characters

< | X |m | N

32-bits, 8 Hex Characters

Table 3-3 El_Bisync_M Integer Formats

Bool

The Remote_Bool function block provides access to a single Boolean parameter
on a slave instrument.

There is no user selectable format for this type. It is sent as a 'Free Format'
integer with a value of O for False or 1 for True.

Time
The Remote_Time function block provides access to a single duration (TIME)
parameter on a slave instrument.

There is no user selectable format for this type. It is sent as a 'Free Format'
integer. The value is the number of milliseconds.

String

The Remote_Str function block provides access to a single String parameter on
a slave instrument.

Format Description
S Standard DEFAULT
r Raw

Table 3-4 El Bisync M String Formats

3-48

PC 3000 Function Blocks

El_Bisync_ M

The Standard encoding consists of the string preceded by an apostrophe (60h).
All non-printable characters are replaced by the escape character (1Bh)
followed by a 2 digit hexadecimal number which represents the ASCII code of
the character. A character is non-printable if its ASCII code is less than 20h or
greater than 7eh.

The Raw encoding implies that there is no encoding. The string is sent
unchanged. This is the format normally used only for debugging
communications but may be used to access parameters of a non-standard
instrument or for sending composite data parameters for which there is no
Remote Variable function block type.

Composite Data

The driver is capable of handling composite data parameters but there are
currently no Remote Variable blocks that support this.

Multi-Block Messages
There is only limited support of Multi-Block messages in this driver.

A received message is accepted if it is in the Multi-Block message format but
only one block is accepted. In this case the message begins with the SOH ('O5h")
character and terminates with the ETX ('03h) character.

No transmitted messages are Multi-Block.

PC 3000 Function Blocks 3-49

El_Bisync M

Example

This example shows the function blocks required to access the Process Variable
PV and Status Word SW parameters of three instruments, two of which are
connected to port A of the LCM and the other is connected to port B of the
LCM.

USER PROGRAM
Remote Real

‘0A01 PV \ El_Bisync_M
"0B002PV1"

"0A00 PV" daddress 7 Port

00 01

Numamnippyunnsnj

"0A01 SWX" Add re: Note:- That only the instrument on port
"0B002SWX" =Jaddress’ Buses a channel id as part of the
"0A00 SW" ajdress | parameter address.

Figure 3-18 El_Bisync_ M Usage Example

Errors

If there is a specific EI_Bisync_M Function Block or EI Bisync driver error, the
error is reported via the Error_No parameter of the EI_Bisync_M Function
Block. Errors concerning access to a specific remote variable are reported via
the associated Remote Variable block.

3-50 PC 3000 Function Blocks

El_Bisync_ M

Error Reporting

Function Block Errors

The following errors are reported by the EI__Bisync_M block via the Error_No
parameter.

Error_No

Error Description

1

PORT ERROR NO ADDRESS

There are less than two characters in the Port parameter of the function block.

5,6 PORT ERROR BAUD RATE NOT AVAILABLE
The baud rate requested is not available on this serial port.

11 PORT ERROR ILLEGAL SLOT
The slot number selected is not legal. The slot number is the first character of the Port
parameter and should be in the range '0' to '5'.

12 PORT ERROR ILLEGAL PORT
The port number selected is not legal. The second character of the Port parameter
and should be in the range 'A' to 'C' for an LCM or 'A' to 'D' for an ICM.

17 PORT ERROR PORT IN USE

The selected Port is already in use for another driver.

Table 3-5 El Bisync M Error Codes

PC 3000 Function Blocks 3-51

El_Bisync M

Remote Variable Error Codes

These errors are reported via the Error_No of the Remote Variable block.

Error_No Error Description

11 ADDRESS ERROR ILLEGAL SLOT
The first character in the Address parameter is not in the valid range of '0' to '5'.

12 ADDRESS ERROR ILLEGAL PORT
The second character in the Address parameter is not in thevalid range of 'A' to
'C' for a LCM port or 'A' to 'D' for an ICM port.

16 ADDRESS ERROR NO REMOTE PARAMETER SERVICE
The port given in the Address parameter does not have a suitable master driver
allocated to it.

50 DRIVER ERROR CANNOT INITIALISE
The communications driver cannot initialise, for example the requested Baud
Rate is not available on the selected port. The Error_ No parameter of the
El_Bisync_M block will give the reason.

60 COMMS ERROR CHECKSUM FAILURE
The response to a parameter read request had a checksum failure.

61 COMMS ERROR TIMEOUT
No response to a request was received within the timeout period. Either the
slave instrument has failed or the requests are so badly corrupted that the slave
does not recognise its' own address.

62 DATA ERROR TOO MANY CHARACTERS
The response to a parameter read request had too many characters in it. This
may be caused by a transmission error.

63 ADDRESS ERROR STRING TOO SHORT
The address string contained in the Address parameter is too short to be valid.

64 DATA ERROR HEX TO LONG
The response to a parameter read request of an integer parameter had a value
encoded with more than 8 hexadecimal character.

65 DATA ERROR NON HEX CHARACTER
The response to a parameter read request of an integer parameter had a value
encoded with a non hexadecimal character.

66 DRIVER ERROR INVALID PARAM TYPE
The parameter/field type used by the Remote Variable block is not yet
supported by the driver.

Table 3-6 Remote Variable Error Codes
3-52 PC 3000 Function Blocks

El_Bisync_ M

Error_No Error Description

67 DATA ERROR NON BOOL VALUE

The response to a parameter read request of a boolean parameter had a value
other than O or 1.

68 DATA ERROR TOO MANY FIELDS

The response to a parameter read request for a multi-element parameter
contained more fields than were expected.

69 DATA ERROR VALUE TOO LARGE

When encoding a value for fransmission it has beenfound that the value is too
large to be encoded using the specified format. For example a REAL value
greater than 9999.0 cannot be represented using any of the TCS formats.

70 DATA ERROR MESSAGE TOO LONG

When encoding a message for transmission, the driverhas exceeded its'
maximum buffer size. This can only occur with multi-element parameters.

71 DATA ERROR STRING TOO LONG

The response to a parameter read request for a STRING parameter contained
more characters than the Remote Variable block can support.

72 DATA ERROR INVALID CHARACTER

The response to a parameter read request for a STRING parameter contained
a non-printable character which was not converted to an Escape sequence.

73 DATA ERROR INVALID FIELD LENGTH

The response to a parameter read request contained a data item of incorrect
length. For example a REAL encoded using the SSD ('Q') format should have
exactly 16 hexadecimal characters.

100 DATA ERROR NAK

The response to a parameter write request was a Negative-Acknowledgement.
This may be caused by incorrect parameter mnemonics, writing to aread-only
parameter or data out of range. The value ofthe slave instruments' EE
parameter should give the reason.

101 COMMS ERROR NOT ACK NOR NAK

The response to a parameter write request was neither a Positive-
Acknowledgement nor a Negative-Acknowledgement. This usually indicates
that the response has been corrupted, possibly by two slaves having the same
address.

103 DATA ERROR EOT

The response to a parameter read request was an EOT character. It indicates
that the slave has rejected the request. This may be caused by incorrect
parameter mnemonics or reading a write-only parameter. The value of the
slave instruments' EE parameter should give the reason.

Table 3-6 Remote Variable Error Codes (continued)

PC 3000 Function Blocks 3-53

El_Bisync M

Error_No

Error Description

104

COMMS ERROR NOT STX

The response to a parameter read request did not start with an STX character.
This usually indicates that the response has been corrupted, possibly by two
slaves having the same address.

105

ADDRESS ERROR INVALID GID

The Group Identification character within the Address string is not within the
valid range. (3rd character.)

106

ADDRESS ERROR INVALID UID

The Unit Identification character within the Address string is not within the valid
range. (4th character.)

107

ADDRESS ERROR INVALID CHID

The Channel Identification character within the Address string is not within the
valid range. (5th character.)

108

ADDRESS ERROR INVALID MNEMONIC

The Mnemonic characters within the Address string are not within the valid
range. (6th and 7th characters.)

109

DATA ERROR NON PACKED CHARACTER

The response to o parameter read request for a REAL parameter encoded using
the IEEE packed format (P') contained an invalid character.

110

DATA ERROR NOT RS

The response to a read request for a 2-level multi-element parameter did not
have a RS character at the start of the data.

111

DATA ERROR STRUCTURE TOO DEEP

The driver currently supports multi-element parameters to a maximum of 2
levels.

112

INTERNAL ERROR EMPTY STRUCTURE

The Remote Variable block has requested the transmission of nothing!

113

COMMS ERROR MNEMONIC MISMATCH

The mnemonics returned as part of the response to a read parameter request
are different to those contained in the request.

114

DATA ERROR GT EXPECTED

The response to a parameter read request for an Integer or Status Word
parameter did not have a '>' at the start of the data.

115

DATA ERROR APOSTROPHE EXPECTED

The response to a parameter read request for a String parameter using the
Standard encoding did not have an apostrophe at the start of the data.

Table 3-6 Remote Variable Error Codes (continued)

3-54

PC 3000 Function Blocks

El_Bisync_ M

Error_No Error Description
201 COMMS ERROR RX OVERRUN
An overrun error was detected on a received character.
202 COMMS ERROR RX PARITY
A parity error was detected on a received character.
203 COMMS ERROR RX PARITY & OVERRUN
A parity and an overrun error were detected while receiving.
204 COMMS ERROR RX FRAMING
A framing error was detected on a received character.
205 COMMS ERROR RX FRAMING & OVERRUN
A framing and an overrun error were detected while receiving.
206 COMMS ERROR RX FRAMING & PARITY
A framing and a parity error were detected while receiving.
207 COMMS ERROR RX FRAMING, OVERRUN & PARITY
A framing, parity and overrun error were detected while receiving.
208-215 BREAK CONDITION CHANGED

Break condition has been detected or cleared
Line has become disconnected

Remote device Baud rate is too slow

Table 3-6 Remote Variable Error Codes (continued)

PC 3000 Function Blocks

3-55

El_Bisync M

Parameter Atiributes

Name Type Cold Read Write Type Specific
Start Access Access InforNamemation
Port STR ING '0A Oper Config
Baud ENUM _9600 Oper Config Numerated 75(0)
300(1)
600(2)
1200(3)
2400(4)
4800(5)
9600(6)
19200(7)
38400(8)
57600(9)
115200(10)
Time_Out TIME 5s Oper Super High Lim. 24day
Low Lim. 100ms
Max_Retries SINT 2 Oper Super High Lim 1000
Low Lim 0
Enable 82X BOOL No Config Config Senses No (0)
Yes(1)
Status BOOL NoGo Oper. Block Senses NOGO(0)
Go(1)
Error_No SINT 0 Oper Block High Lim 255
Low Lim 0
Queue Space |SINT 0 Oper Block High Lim 255
Low Lim 0

Table 3-7 El_Bisync_M Parameter Attributes

3-56

PC 3000 Function Blocks

El_Bisync_S

EI_BISYNC_S FUNCTION BLOCK

S RERRR

STRING —|:

STRING “-1 ____________________

* STRING

BOOL

SINT

SINT

INT

BOOL —|: Wr_Protect Error_No

SINT

Figure 3-19 El_Bisync_S Function Block Diagram

Functional Description

The EI_Bisync_S Function Block supports communications on a designated
serial communications port using the EI Bisync ASCII protocol and configures
the serial port to function in Slave mode. Detailed knowledge of the Bisync
protocol is not normally required to use this function block. However, you may
refer to the EI Bisync Communications Handbook for specific details if
required. Before reading this description, you are advised to gain a general
understanding of the PC3000 communications system by reading the PC3000
Communications Overview.

The use of Slave Variables with the EI_Bisync_S function block and associated
addressing is described in detail in this function block description. Because the
default protocol adopted for the PC3000 communcations behaves as a EI
Bisync Slave, details of the default protocol are also defined.

This function block will be required when designing or programming the
PC3000 to use an EI Bisync interface that functions in slave mode, i.e.when the
PC3000 is connected to a EI Bisync master device via a serial link. Typical
master devices are the Eurotherm Supervisory System (ESP) and Production
Orchestrator (PO).

PC 3000 Function Blocks 3-57

El_Bisync.S

Note: A few features described in this document are not
supported in the current release of this function block; these are
listed in the appendix.

The Eurotherm International Bisynchronous Communications protocol (EI
Bisync) is implemented on the PC3000, with the PC3000 acting as a slave, by
means of a driver function block called EI_Bisync_S.

The driver block deals with the protocol specific details of the communications
and is supported by generic Slave Variable function blocks. The Slave Variable
blocks are linked to the driver by means of a protocol specific address and
define values which can be read or written by a remote device using the
protocol type specified in the address parameter, in this case "EB' for EI Bisync.

In addition to providing access to the Slave Variables, the driver also provides
direct access to system parameters and function block parameters using
reserved communications addresses.

The addresses of the function block parameters may change each time the
PC3000 user program is re-built, so the EI Bisync master devices should be
capable of importing a function block parameter address file to speed the
modifications of the parameter addressing tables within the master device. ESP
is an examples of EI Bisync master devices that use function block parameter
addresses that are automatically generated by the Programming Station in
address files. When a user program is built the user may optionally create a
.GAT file which holds the function block parameters as a list of ESP Gates. To
understand how these address files are used within these products, refer to the
ESP manuals.

Note:-LCM ports A,B and C provide an EI Bisync Slave
protocol as default, if no communications driver function blocks
are assigned to them.

Although the default protocol can be used for EI Bisync communications with a
master device, it is recommended that an EI Bisync Slave function block,
EI_Bisync_S, is assigned to these ports when used. This includes port A which
is normally used for the PC3000 Programming Station.

Using a EI_Bisync_S communications driver function block instead of using
the default communications has the following advantages :

The EI_Bisync_S function block provides diagnostic informationincluding
error codes.

The user program Structure Text (ST) listing can show the full assignment of
ports by listing the communications driver function blocks.

Slave Variables can be used. Default communications cannot address any EI
Bisync Slave Variables.

Communications characteristics such as Baud rate can be changed using the
communications driver function block.

3-58

PC 3000 Function Blocks

El_Bisync_S

Note:-That a EI_Bisync_S communications driver function
block only has control over an assigned port when the user
program is executing, i.e. when the PC3000 Programming
Station displays the PC3000 mode as 'Running'. In any other
mode, the PC3000 always reverts to default communications.
which provides EI Bisync Slave protocols on ports A,B and C of
the LCM. For example, an EI_Bisync_S communications. driver
function block assigned to port C could set the baud rate to
19200 Baud. The port will operate at 19200 Baud only when the
user program is executing; whenever the user program ceases
execution, the port will revert to the default EI Bisync Slave
protocol operating at 9600 Baud.

Function Block Attributes

Execution Time:cccccueenn... 12 p Secs

TYPC eeteieeetreeeeerrteeee e e 850

Class: c.ceeveeeeeeieeeeeieeceeeeeeens COMMS

Default Task:cccoeevveeennnnnee. Task_1

Short List: c...eevveeneeieieineeeeeeeen, Port Status Wr_Protect Gid
Memory requirements: 2466 Bytes

Parameter Description

Driver Configuration Parameters

The EI_Bisync_S block has several configuration input parameters which
define various aspects of the driver and should be set prior to running the user
program. Changing these parameters while the user program is executing will
have no effect on the driver except under special circumstances - see 'PC3000
Communications. Overview' section "Temporarily changing configuration
parameters’. The only input which can affect the block whilst running is
Wr_Protect.

Port

The Port parameter is the two character address of the port on which the Bisync
protocol is to run. The first character is a number from O to 5 representing the
rack slot and the second character is a letter representing the port within that
slot. e.g. '0C' would be port C on the LCM and if there were an ICM in slot 3
'3A’ could refer to its top port.

PC 3000 Function Blocks 3-59

El_Bisync.S

Baud

The Baud parameter gives a choice of 11 different rates from 75 baud up to
115.2 kbaud (as shown in Table 3-9 with a default of 9600 baud. Note that not
all ports will be able to support all baud rates. This will be indicated by an error
when the function block is first run (see description of Error_No).

Enum Value

Baud Rate

0

75

j—

300

600

1200

2400

4800

9600

19200

38400

O | 0| N[MWD

57600

o

115200

Table 3-8 El_Bisync_S Baud Rates

Gid

The Gid parameter specifies the Bisync Group Identifier to which the PC3000
will reply over the communications link. The PC3000 will respond to all Unit

Identifiers within this group.

The range of the Gid is '0' (30h) to ‘o' (6Fh).

If the Gid is empty (null string), a hardware selected Identifier is used. This is
set by either links on the LCM or a rotary switch on an ICM depending upon

which module the port is on.

3-60

PC 3000 Function Blocks

El_Bisync_S

Version 1 LCM
LCM Links ICM Switch GID
(LK12 LK11

LK2 LK1)
1000 0 0
1001 1 ak
1010 2 '2'
1011 3 3
1100 4 ‘4
1101 5 '5'
1110 6 '6'
1111 7 7'
0000 8 '8
0001 9 ‘9
0010 ‘A
0011 'B'
0100 'C
0101 ‘D
0110 'E
0111 'F

Table 3-9 Hardware Selected GID

Note:-That LCMs are supplied with all links fitted. This gives a
factory default GID of "7'. On version 2 LCM the rotary switch
corresponds to GID directly.

Wr_Protect

The Wr_Protect parameter when set inhibits all incoming writes through this
port. If a write operation is attempted when write protection is on then an error
response is generated by the driver.

TXB_Max

The TXB_Max parameter controls the maximum length of a transmission
block.. If set to zero the multi-block feature is disabled and messages with a
data field longer than 255 bytes may be transmitted. If non-zero, any message

that would exceed the maximum is split into two or more blocks.

PC 3000 Function Blocks

3-61

El_Bisync.S

The value may be read or written via. the communications link using the BL
system parameter.

Driver Status Parameters

The driver status is indicated by three output parameters in the EI_Bisync_S
function block.

Status

The Status parameter is a boolean indication of the state of the link controlled
by the driver. If there are no problems with the link this parameter reads Go,
but when an error occurs it changes to NOGO. If the Status is NOGO the
Error_No parameter indicates the reason for the problem.

Error_ No

The Error_No parameter indicates the reason for any errors with the link. If
the link Status is Go then the Error_No will be 0 (OK). For full details of
error codes see the section on Error Reporting.

EError

The EError parameter normally indicates the reason for the last incoming
transaction being rejected. The PC3000 functioning as a Slave, will indicate
rejected incoming read transactions by returning an EOT character or a NAK
character for a rejected write transaction. However, in some cases the PC3000
will not respond on receiving a corrupt transaction with certain types of error
such as a parity error and EError parameter is not changed.

The value is accessible over the communications link by reading the standard
EE system parameter.

The value will remain the same until another transaction is rejected.

For full details of EE error codes see the section on Error Reporting.

Parameter Addressing

A particular PC3000 is selected on a multi-dropped serial link by the Gid ;
within a PC3000 there are three different parameter domains that can be
addressed using the Uid, Channel Identity and EI Bisync mnemonic. The
domains are System Parameters, Slave Variables and Function Block
parameters.

An EI Bisync parameter address consists of a Unit Id (Uid), a Channel 1d (Chid)
and a two character mnemonic (Mn0O Mn1). Table 11 shows which of these
address components define the mapping to the different domains :

3-62

PC 3000 Function Blocks

El_Bisync_S

Uid MnO Parameter Domain
Any value Not '0' to '9' System
'0' '0' to '9' Slave
Not '0' '0'to '9' Function Block

Table 3-10 Domain Mapping

System mnemonics do not require a specific Uid; any value can be used by an
external master device. All system mnemonics have an alphabetic character for
the first character, eg. 'EE','MN'. A full list is given in the section PC3000
Bisync System Mnemonics.

Slave Variables are always assigned a Uid of '0' and should be given
mnemonics in the Slave Variable Address that start with a numeric character,
eg. '1A’','4B', '90'".

Function Block parameters are assigned Uid, Channel IDs and mnemonics by
the PC3000 Programming Station when a user program is created. The Uid and
Channel ID are used to address a particular function block instance, the
mnemonic defines the parameter within the instance. The assignments are given
in the .CEL and .GAT files which can be created when a user program is
built,to assist ESP integration.

Addressing for ESP

Whenever a PC3000 is addressed with a Uid in the range '0' (30h) to 'O’ (4Fh)
the parameter data is encoded/decoded as normal. However if the Uid character
is offset by adding 20h to its position in the ASCII code set, so that it is in the
range 'P' (50h) to '0o'(6Fh), the data is encoded/decoded for the Eurotherm
Supervisory Package (ESP). For example, if the normal Uid=1', using Uid=Q',
will cause ESP data encoding/decoding to be used.

The ESP gate definitions given in the .GAT file generated by the PC3000
Programming Station have all Uid values offset by 20h to ensure that the
correct encoding is used.

Channel Identities

A channel identity is normally required for all transactions except when reading
System parameters when a Channel Id is optional and is ignored; i.e. it is
possible to read a system mnemonic with or without a channel identity.
However, note that a Channel Id is required when writing to system parameters.

PC 3000 Function Blocks 3-63

El_Bisync.S

Slave Variables

The user may associate instances of Slave Variable function blocks with this
driver by starting the Address string of an instance with 'EB'. Any instance of an
EI_Bisync_S block may then read or write the Value parameter of the Slave
Variable block and so is accessible through more than one communications
port.

These parameters may only be accessed when the PC3000 is in the RUNNING
mode.

The Address is entered in the form 'EB<Chid> < Mn0O Mn1>'. Where Chid can
be in the range '!' (21h) to ' ~' (7Eh), MnO can be in the range '0' (30h) to '9'
(39h) and Mnl is in the range '0' (30h) to '~' (7Eh). Note that MnO is restricted
to numeric characters to ensure that the address does not clash with any pre-
defined System parameter. Lists of acceptable characters for Slave Variable
addresses are given in section Slave Variables Address Ranges.

Both the Channel Id and Mn1 can use numeric and alphabetic characters,
However, the ranges can be extended to some special characters if required.

Examples of valid Slave Variable Addresses are :

'EB110'
'EB111'
'EBAG6B'
'EBZ99'

Note:-That Slave Variables assigned to EI Bisync Slave
protocol using the 'EB' protocol selector are accessible from any
ports to which a EI_Bisync_S communications. driver function
block has been assigned. However, although ports A,B and C of
the LCM operates by default, as EI Bisync Slaves when no
communications. driver function block is assigned to them,
access to Slave Variables using the default protocol is not
possible.

A full description of how Slave Variables can be used is given in the 'PC3000
Communications Overview'.

Multi-Element

If the Slave Variable block is multi-element, eg. Slave_Real_8, the Address
refers to a composite data parameter containing all of the elements. To access
individual elements an offset is applied to Mn1 . For example, a Slave_Real_8
with an Address of 'EBx90' the PC3000 will respond to 18 addresses. These
are:

3-64

PC 3000 Function Blocks

El_Bisync_S

GID Value Encoding
GID 0x90 composite parameter standard encoding
GID 0x91 Value 1 standard encoding
GID 0x92 Value 2 standard encoding
GID 0x93 Value 3 standard encoding
GID 0x94 Value 4 standard encoding
GID 0x95 Value 5 standard encoding
GID 0x96 Value_6 standard encoding
GID 0x97 Value 7 standard encoding
GID 0x98 Value 8 standard encoding
GID Px90 composite parameter ESP encoding
GID Px91 Value 1 ESP encoding
GID Px92 Value 2 ESP encoding
GID Px93 Value_3 ESP encoding
GID Px94 Value 4 ESP encoding
GID Px95 Value 5 ESP encoding
GID Px%96 Value_6 ESP encoding
CID Px97 Value 7 ESP encoding
CID Px98 Value 8 ESP encoding

Table 3-11 Multi-element Addressing

Several Slave Variables may be read as a composite parameter by specifying a
Mnl of "* via. the communications link. For example, if there were three Slave
Variables 'EBy11', 'EBy12' and 'EBy15' they could be read or written as
composite data using the address GID Oy1* or GID Py1*. If a multi-element
Slave is included then a two level composite data parameter is generated.

Function Block Parameters

Any Function Block parameter may be accessed if its' address is known. This
would normally be read from the .CEL or .GAT files produced by the
Programming Station.

Function Block parameters may only be accessed when the PC3000 contains a
valid User Program.

A parameter within the User Program is always part of a Function Block
instance. The parameters within an instance are numbered from 1 to 790 and
instances within a User Program are numbered 1 to 2914.

PC 3000 Function Blocks 3-65

El_Bisync.S

Standard Address Mapping

For standard data encoding the mapping of function block instance number and
parameter number within instance to EI Bisync addresses is as follows :-

UID = (instance / SEh) + 31h
CHID = (instance % 5Eh) + 21h
MnO = (parameter / 4Fh) + 30h
Mnl = (parameter % 4Fh) + 30h

Where % implies the Modulus operator.

This gives the ranges :--

1611 YRR "' (30h) to 'O’ (4Fh)
CHID oo, '"I'(21h) to ' ' (7Eh)
MDO oo, '0' (30h) to '9' (39h)
1023 ['0' (30h) to ' (7Eh)

ESP Address Mapping

For ESP data encoding the mapping of instance number and parameter number
within instance to EI Bisync addresses is the same as for standard encoding
except 20h is added to the Uid. i.e. :-

UID = (instance / SEh) + 51h
This gives the range:--

UID 'R’ (30h) to 'o' (4Fh)

Multi-Parameter

To access all the parameters of one function block instance as a single
composite parameter the mnemonic i.e. MnO Mnl1 of '00' is used.

System Parameters

All PC3000s have a built in set of parameters. These include the standard
Instrument Identify (IT) and Mode (MN) parameters. Others, for example,
support the Downloading/Uploading of user programs and the monitoring of the
state of the I/0 racks. Details of using the System parameters are not included
in this document although a full list of system parameters and functions
accessible by EI Bisync mnemonics is given in the section PC3000 EI System
mnemonmics

When reading (polling) a parameter any valid Uid may be specified. Some
system mnemonics also require a channel identity, Chid. A Chid can also be

3-66

PC 3000 Function Blocks

El_Bisync_S

given when reading those mnemonics that do not specifically require it, in
which case providing it is within the EI Bisync valid set, it is ignored. In all
cases, if a Chid is used, it is returned in the response message.

Data Encoding

The data content of the communications message is briefly described in this
section. Two formats are available for each data type and the format is
automatically selected depending upon the Uid that is used when selecting the
PC3000.

The first is a subset of formats and has been chosen to be the most efficient to
transfer and process data of each basic type. It is used if the Uid is in the range
'0' (30h) to 'O’ (4Fh).

The second is tailored to the requirements of the Eurotherm Supervisory System
(ESP) which supports only a limited number of data types. It is used if the Uid
is in the range 'P' (50h) to 'o' (6Fh).

Slave Variable Format Specification

From version 3.00 onwards, the complete set of data formats supported in the
EI Bisync Master function block are also supported in the EI Bisync Slave
function block.

The EI Bisync format used when accessing Slave variables can be defined by
using a format character which is appended to the Slave variable address. Full
details of the valid format characters for each data type can be found in the EI
Bisync Master function block documentation (EI_Bisync_M).

For example for a Slave_Real :
Address = 'EB0O60' - implies default 24 bit precision format
Address = 'EBO60p' - selects the 32 bit precision format

Standard Encoding
The following encoding is used for normal EI_Bisync access.

Floating Point (REAL)

Floating Point (Real) values are transmitted and received in Packed Single-
precision IEEE format. This is a variable length format that requires only
significant data to be transmitted. The format type character is '@"'.

PC 3000 Function Blocks 3-67

El_Bisync.S

Bits Max. Chars. Sent Example address
P 24 4 'EBx99' or 'EBx99P' DEFAULT
P 32 6 'EBx99p' Not
currently
supported
Table 3-12 El_Bisync_S Floating Point Formats
To reduce the number of characters transmitted by the PC3000 the resolution of
the number may be limited. By default a maximum of 24-bits of the 32-bit
value are transmitted but full resolution can be sent if requested as part of the
Address string using the 'p' format character. Format character 'P' can be used to
explicitly select 24 bit precision.
The following table provides examples of floating point values and the
associated ASCII characters used to encode the values when transmitted via EI
Bisync to 24 bit precision.
REAL Value ASCII Characters
encoding
0.0 @
2.0 @P
-2.0 @p
0.5 @Op
-0.5 @op
1000.0 @QGh
10000.0 @Qap
100000.0 @Q1Mp
Table 3-13 El_Bisync_S Floating Point Values Encoded
A real number in IEEE format is broken down into number of fields as shown:
3-68 PC 3000 Function Blocks

El_Bisync_S

T T T T
]] 1 1
1 1 1 1
4 byte IEEE floati int val : : : :
e oating-point value. ' ' ' '
1 1 1 1
[1 1 1
o’ . ,," f & ,:
L4 0 0‘ 4y '
* R PO o7 ’ n '
R4 . P o ., X .
. o’ o R4 ., ’ [
* ofe o' e 'l , ’ ' g 3
L4 PR o ¢ A4 ’ L | N
L4 ¢ 0 ¢ 0 AR ¢ ['
* 0 ¢ o . ¢ 1]
. (IR . ‘. ¢ . '
* . P . '
* P 'l * ’ * ’ ’ ' L}]
P R " * . P . ' ¥
4 * * . * ’ ‘ ?]]
* . . * ¥
* . . . * ’ Q 2 [] 1l
* K * . 04 U . ’ 1 '
° ’ . . L4 *’) 3 ’ 1
’ 4 04 Py 4) . ’ ’ . '
P ’ ’ P * 4 '] '
. R4 . . . * ’) ’ : \
- . * * . . ’ ’ ’ ’
’ . * ’ 4 * . . U ' [] [
s

Character 1 Character 2

Figure 3-20 Floating Point Encoding

(

Extended)

Character3 Character4 Character5 Character 6

(Extended)

More details on this format are given in EI Bisync Communications Protocol

Extensions (HP024113)

Integer

Integer values are transmitted and received as ASCII hexa decimal format. This
is a variable length format that requires only significant data to be transmitted.
The format type code is ' and the data content may be 0 upto 8 characters in
length to represent a 32-bit value. Negative values require the transmission of

the full 8 characters.

The following table shows integer values and the associated ASCI encoding.

PC 3000 Function Blocks

3-69

El_Bisync.S

BOOL

Integer Value

ASCII encoding

0 >
1 >1

16 >10

256 >100

4096 >1000
65536 >10000
1048576 >100000
16777216 >1000000
268435456 >10000000
2147483647 > 7FFFFFFF
-1 >FFFFFFFF

Table 3-14 El Bisync_S Integer Values

Boolean values are sent in the same way as Integer values.

Boolean Value

ASCII encoding

0

>

1

>1

Table 3-15 El Bisync S Boolean Encoding.

3-70

PC 3000 Function Blocks

El_Bisync_S

TIME

Duration (Time) values are sent as an unsigned integer number of milliseconds.
Table 3-17 shows examples of duration values and the associated ASCII

encoding.

DATE

TIME value ASCIl encoding
Oms >
Tms >1
16ms >10
256ms >100
4s96ms >1000
1m5s536ms >10000
17m28s576ms >100000
4h39m37s216ms >1000000
3d2h33m55s456ms >10000000
49d17h2m47s295ms >FFFFFFFF

Table 3-16 El Bisync S Time Encoding.

Date values are sent as an unsigned integer number of days since 1970-01-01.

DATE value ASCII encoding
1970-01-01 >
1970-01-02 >1
1991-04-04 >1E53
2020-12-31 >48C3

Table 3-17 El Bisync S Date Encoding.

PC 3000 Function Blocks

3-71

El_Bisync.S

DATE_AND_TIME

Data And Time values are sent as an integer number of milliseconds since
1970-01-01-00:00:00. Table 3-19 shows examples of DATE_AND_TIME
values and the associated ASCII encoding.

DATE_AND_TIME ASCII encoding
value

1970-01-01-00:00:00 >
1970-01-01-00:00:01 >1
1991-04-04-16:14:32 >27FB50E8
2038-01-19-03:14:07 >7FFFFFFF

Table 3-18 El Bisync S Date and Time Encoding.

TIME_OF DAY
Time Of Day values are sent as an integer number of seconds since 00:00:00.
Table 20 shows examples of TIME_OF_DAY values and the associated ASCII

encoding.
TIME_OF_DAY ASCII encoding
value
00:00:00 >
00:00:01 >1
00:00:16 >10
00:04:16 >100
01:08:16 >1000
18:12:16 >10000
23:59:59 >1517F

Table 3-19 El Bisync S Time of Day Encoding.

STRING

String values are sent by prefixing an apostrophe (27h) and expanding all non-
printable characters to a three character Escape sequence. This Escape sequence
consists of the ESCAPE character (1Bh) followed by two hexadecimal digits
repesenting the ASCII code of the character.

A non-printable character is defined as one with an ASCII code of less than 20h
or greater than 7Eh.

3-72 PC 3000 Function Blocks

El_Bisync_S

Composite Data
Up to three levels of nested structures are supported.

Four characters are used as separators between the fields in a hierarchical
manner.

Abbreviation Hex Code
FS 1C 3 level start
GS 1D 2 level start 3rd level separator
RS 1E 1 level start 2nd level separator
us 1F 1st level separator

Table 3-20 El Bisync S Composite Data Encoding.

The first data character indicates how many levels there are to the structure.
Fields within the structure are then separated by lower level separator
characters.

The occurrence of a higher level separator implies the simultaneous occurrence
of all lower level separators.

rs>1234us @Pqr

is a 1 level structure with 2 fields.

cs >1234uvs @Pqrzs >1

is a 2 level structure with 2 fields at the top level with the 1st being a
structure containing 2 fields.

For example :

When writing to the parameter, fields that are not to be changed may be
omitted. So to write to the last field of the top level in the previous example
would be :

asrs >1

Also when writing, any level may be prematurely terminated if there is no more
data to send. So to write to just the 1st field of the lower structure in the
previous example would be :

cs >1234

PC 3000 Function Blocks 3-73

El_Bisync.S

Eurotherm Supervisory System (ESP) Encoding

The following encoding is used when parameters are addressed using the
normal Uid offset by 20h. This is provided for communications with ESP
which requires an alternative encoding scheme.

Floating Point (REAL)
This is the same as standard encoding, except with fixed length data field.

Examples (24-bit resolution) :

REAL value ASCIl encoding

0.0 @@E@E@

2.0 @P@@@

-2.0 @pr@@@

0.5 @Op@@

-0.5 @op@@

1000.0 @QGCGh@
10000.0 @Qop@
100000.0 @Q1Mp

Table 3-21 El Bisync_S Floating Point (REAL) Encoding.

INTEGER
Converted to REAL.

BOOL
Same as standard encoding, except with fixed length data field.

Boolean Value ASCII encoding
0 >00

1 >01
Table 3-22 El Bisync_S Boolean Encoding for ESP.

TIME
Sent as Floating Point (REAL) number of seconds.

PC 3000 Function Blocks

El_Bisync_S

DATE
Sent as Floating Point (REAL) number of days since 1970-01-01.

DATE_AND TIME
Sent as Floating Point (REAL) number of seconds since 1970-01-01-00:00:00.

TIME_OF DAY
Sent as Floating Point (REAL) number of seconds since 00:00:00.

STRING

There is no special ESP encoding for String values, so they are sent using the
standard encoding.

Composite Data

The field separators and rules are the same as the standard encoding, but the
data is encoded as defined in this section for ESP.

Link Layer Protocol

A very brief summary of the EI Bisync Link Layer Protocol, i.e.the basic
message exchange formats is included here. For a full description refer to the
'EI Bisync Communications Handbook (HP022047)'".

Instrument Addressing

The PC3000 is considered to be addressed if it receives the EOT (04h) character
followed by its' Gid repeated twice and a valid Uid repeated twice.

For example :

ror 0011

would address a PC3000 with a Gid of '0'. the Uid of '1' is used as part
of the address of a parameter within the PC3000.

The PC3000 remains addressed until either an EOT is received or there is a
power-up/reset.

Parameter Read

To read a parameter, the PC3000 should be addressed, as given, followed by the
parameter address fields CHID MnO Mn1 and an ENQ (05h). For example :

PC 3000 Function Blocks 3-75

El_Bisync.S

ror 0011123 £n0

If valid, the PC3000 will respond with an STX (02h), the CHID Mn0O Mn1 as
sent, the data, an ETX (03h) and check character. This check character is the
binary sum of (same as exclusive OR) of each character following the STX
upto, and including the ETX. For example :

stx 123>456E:x .

where ":' is the check character.

If invalid the PC3000 will respond with an EOT (04h) and the EE system
parameter will contain a code referring to the reason.

Parameter Write

To write a parameter, the PC3000 should be addressed, as above , then sent an
STX (02h) , the parameters’ CHID Mn0 Mnl1, the data, an ETX (03h) and a
check character (as for the read). For example :

eor 001 1srx 123>456%7x -

If valid the PC3000 will respond with an ACK (06h).

If invalid the PC3000 will respond with an NAK (15h) and the EE system
parameter will contain a code referring to the reason.

3-76 PC 3000 Function Blocks

El_Bisync_S

Example

This example shows the function blocks required to provide access to three
floating point (REAL) and three status word (SW) Slave Variables through both

ports A and C of the LCM.
Production
Orchestrator
USER PROGRAM Cell E.S.P.

Slave Real

El _Bisync S
blIsync f

Port

Gid
)
IH] A
B c

PC3000
El_Bisync_S
71 Port
Gid

Figure 3-21 El Bisync S Usage Example.

Note:-All EI Bisync S Communications Driver Function Blocks
have access to Slave Variables with an Address containing the
'EB' protocol selector.

Error Reporting

If there is a specific EI_Bisync_S Function Block or EI Bisync driver error, the
error is reported via the Error_No parameter of the EI_Bisync_S Function
Block. Errors concerning a specific slave variable are reported via the
associated Slave Variable block.

PC 3000 Function Blocks 3-77

El_Bisync.S

Function block Errors

Error_No Error description
1 PORT ERROR NO ADDRESS
*There are less than two characters in the Port parameter of the function
block.
5/6 PORT ERROR BAUD RATE NOT AVAILABLE

*The baud rate requested is not available on this serial port.

11 PORT ERROR ILLEGAL SLOT

*The slot number selected is not legal. The slot number is the first
character of the Port parameter.

12 PORT ERROR ILLEGAL PORT

*The port number selected is not legal. The port number is the second
character of the Port parameter.

17 PORT ERROR PORT IN USE

*The selected Port is already in use for another driver.

18 ERROR TOO MANY SLAVE PARAMETERS

*Too many Slave Variables have been declared to the system.

19 PORT ERROR TOO MANY DRIVER TYPES

*Too many slave driver types have been declared to the system.

Table 3-23 El Bisync S Error Codes.

3-78 PC 3000 Function Blocks

El_Bisync_S

Slave Variable Error Codes

These errors are reported via the Error_No parameter of the Slave Variable
block.

Error_No Error description

1 ADDRESS STRING TOO SHORT

*The address string contained in the Address parameter is too short o be
valid.

11 ADDRESS ERROR ILLEGAL SLOT

*The first character in the Address parameter is not in the valid range of '0'
to 5

12 ADDRESS ERROR ILLEGAL PORT

*The second character in the Address parameter is not in the valid range
of 'A' to 'C' for a LCM port or 'A' to 'D' for an ICM port.

100 ADDRESS CHANNEL OR MNEMONIC INVALID

*The Channel Identity. or Mnemonic is not within the allowed range.

255 DRIVER NOT FOUND

*No port driver has been found that supports this Slave Variable. Either
there is not a driver that supports the selected protocol (i.e. EB in this case)
or the driver has not been able to initialise. The Error No parameter of the
El_Bisync_S block will give the reason.

Table 3-24 Slave Variable Error Codes.

EE Error Codes

These errors are given by the EError parameter of the EI_Bisync_S block and
by the EE system parameter read via. the serial link. The decimal values for
these codes will be used with the EError parameter when displayed on the
PC3000 Programming Station. The hexadecimal value is used when the error is
read from the PC3000 using the EI Bisync mnemonic EE.

PC 3000 Function Blocks 3-79

El_Bisync.S

EError Error description
0 (0000h) EERROR NONE
*No request has failed since the PC3000 system was reset.
503 (OTF7h) EERROR INVALID CHANNEL OR MNEMONIC
*The Channel Identity. or Mnemonic within the request is not recognised.
754 (02F2h) EERROR INVALID BCC

*The checksum (BCC) of a write request did not correspond with the
contents of the message.

1528 (05F8h)

EERROR READ ONLY

*The parameter referred to in a write request was not writable.This may be
due to the Write_Protect being set either on the El_Bisync_S block or the
Remote Variable block.

2040 (07F8h)

EERROR INVALID DATA

*The data content of a write request was invalid. For example a non-
printable character in a string or a missing parameter type character.

2296 (08F8h)

EERROR DATA OUT OF RANGE

*The data content of a write request exceeded the allowable range of the
parameter.

8443 (20FBh)

EERROR UNSUPPORTED PARAMETER TYPE

* An attempt was made to access a Slave Variable that has a value of a type
that is not yet supported by the El_Bisync_S driver.

8699 (21FBh)

EERROR UNABLE TO ENCODE

*The parameter being read could not be encoded because of an internal
limitation.

8955 (22FBh)

EERROR COMPOSITE ACCESS NOT YET SUPPORTED

*Reading or writing all the parameters of a function block as a single multi-
element parameter has not yet been supported.

9211 (23FBh)

EERROR RS EXPECTED

*The RS character (1Eh) was expected to be the first data character of the
write request. The parameter is a one level structure.

9467 (24FBh)

EERROR TOO MANY ELEMENTS

*The write request for a multi-element parameter contained too many fields.

9723 (25FBh)

EERROR STRUCTURE TOO DEEP

*An attempt was made to access a Slave Variable that is more than a single
level structure. This currently is not supported.

Table 3-25 EE Error Codes.

3-80

PC 3000 Function Blocks

El_Bisync_S

EError Error description

9979 (26FBh) EERROR INTERNAL FAILURE

*A failure occurred within the El_Bisync_S driver whilst processing the
request. This should never happen.

33275 (81FBh) EERROR FILE TOO MANY OPEN

*Either a file is aleady open through this port or the total number of files
open is the maximum allowed.

33276 (82F8h) EERROR FILE INVALID FILE SYSTEM

*Unsupported file system selected.

33278 (84F8h) EERROR FILE INVALID OPEN MODE

*Invalid mode used when opening a file. Only Create, Read, Write and
Append supported.

33279 (85F8h) EERROR FILE INCORRECT FORMAT

*Contents of format string incorrect.

33280 (86F8h) and | EERROR FILE NOT ENOUGH SPACE

33281 (87F8h) *Not enough memory when formating file system.

33282 (88F8h) EERROR FILE DOES NOT EXIST

*File does not exist in file system and so, for example, cannot be deleted.

33283 (89F8h) EERROR FILE ALREADY EXISTS

*File already exists in file system and so, for example, a new file with the
same name cannot be created.

33284 (8AFBh) EERROR FILE MAXIMUM NUMBER

*The file store already contains the maximum number of files allowed.

33285 (8BFBh) EERROR FILE ALREADY OPEN FOR READ

*The file is already open for reading so cannot be opened for writing.

33286 (8CFBh) EERROR FILE ALREADY OPEN FOR WRITE

*The file is already open for writing so cannot be opened for reading.

33287 (8DFBh) EERROR FILE NOT OPEN FOR READ

*The file is not open for reading so cannot be read from.

33288 (8EFBh) EERROR FILE NOT OPEN FOR WRITE

*The file is not open for writing so cannot be written to.

Table 3-25 EE Error Codes. (continued)

PC 3000 Function Blocks 3-81

El_Bisync.S

EError Error description

33289 (8FFBh) EERROR FILE NO MORE SPACE

*The file store has no more space for file storage.

33290 (90FBh) EERROR FILE STORE UNFORMATTED

*The file store has not been formatted.

33291 (91FBh) EERROR FILE INVALID NAME

*The file name contains invalid characters (eg. control characters).

Table 3-25 EE Error Codes. (continued)

PC3000 El Bisync System Mnemonics

The following mnemonics are provided either to support the EI Bisync protocol
or to access system functions within the PC3000. System mnemonics are
supported on LCM ports A,B or C when either operating in the default
communications. mode or when configured as for EI Bisync Slave operation
using the (EI_Bisync_S) communications. driver function block. Although
system functions are provided as part of the interface with the PC3000
Programming Station, they may be used for some special applications.

In the following table, fields that are not applicable are shown as NA. Note that
data returned when reading a mnemonic sometimes contains a number of fields.
In some cases writing to a mnemonic performs a specific function.

3-82 PC 3000 Function Blocks

El_Bisync_S

Mnemonic Read Description Write Description

EE Last Bisync error code NA

FF Read file system format Format file system
FO NA Open an LCM file

FC NA Close an LCM file

FR Read back block from LCM file NA

Fr Read back block from LCM file NA
Fw NA Write a block to an LCM file
FD Read first directory entry NA

Fd Read next directory entry NA

FK NA Delete an LCM file

FY NA Copy an LCM file

I Instrument identifier NA
VO Version number NA

cl Configuration information NA
MN Read the PC3000 mode Request a change of PC3000
mode

Table 3-26 PC3000 System Mnemonics

The following system mnemonics are unsupported and are subject to change
between different releases of the PC3000. These are listed for diagnostic

purposes only.

PC 3000 Function Blocks

3-83

El_Bisync.S

PC3000 System Mnemonics

Mnemonic Read Description Write Description
ss Reads PC3000 startup strategy NA
se Read system error record NA

(Chid selects entry)

sc Reads count of system errors Clears system error log

rl Reads rack 1 module info. NA

(CHID selects slot)

r2 Reads rack 2 module info. NA

(CHID selects slot)

r3 Reads rack 3 module info. NA

(CHID selects slot)

r4 Reads rack 4 module info. NA

(CHID selects slot)

r5 Reads rack 5 module info. NA

(CHID selects slot)

ré Reads rack 6 module info. NA

(CHID selects slot)

r7 Reads rack 7 module info. NA

(CHID selects slot)

r8 Reads rack 8 module info. NA

(CHID selects slot)

dd Upload block of source code Download block of source code

ds Read source code status info NA

db Read source code block number Select source code block

ms Read details of user program area Select user program area for
selected read/write

mw Read user program area selected by Write user program area selected
'ms' by 'ms'

Table 3-27 PC3000 Unsupported System Mnemonics

3-84 PC 3000 Function Blocks

El_Bisync_S

Mnemonic Read Description Write Description

xe Read use prograom status information NA

mi Read user program identity NA
information

mv Read user program unique ID NA

Xs Read details of user program area Select user program area for
selected read/write

XW Read user program area selected by Write user program area
'xs' selected by 'xs'

xe Read use program status information NA

Xi Read user program identity NA
information

xv Read user program unique ID NA

Table 3-27 PC3000 Unsupported System Mnemonics (continued)

PC 3000 Function Blocks

3-85

El_Bisync.S

Slave Variable Address Ranges

The following tables show which characters are acceptable for Slave Variable
Addresses, i.e. can be used for a Slave Channel Identity CHID

ASCIl Table Hexadecimal - Character

21 | 22 23 # 24§ 25 % 26 & 27 '
28 (29) 2A * 2B + 2C , 2D - 2E . 2F /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 377
38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ¢
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 | 4A] 4B K AC L 4AD M AE N 4F O
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59Y 5A Z 5B | 5C \ 5D] 5e ~© 5F
60 ° 61 a 62 b 63 ¢ 64 d 65 e 66 f 67 g
68 h 69 i 6A | 6B k 6C | 6D m 6E n 6F o
70 p 71 ¢q 72 r 73 s 74 1 75 u 76 v 77 w
78 x 79 y 7A z 7B { 7C | 7D } 7E ~
Table 3-28 Acceptable Slave Address Characters
Valid Characters which can be used for the first mnemonic character Mn0O of a
Slave Variable Address are given in Table 3-29.
ASCIl Table Hexadecimal - Character

30 0 311 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9

Table 3-29 Acceptable Characters for Mnemonics Mn0O

3-86 PC 3000 Function Blocks

El_Bisync_S

Valid characters which can be used for the second mnemonic character Mn1 of
a Slave variable Address are given in table 3-30.

ASCIl Table Hexadecimal - Character

300 311 32 2 33 3 34 4 355 36 6 37 7
38 8 399 3A 3B ; 3C < 3D = 3E > 3F 2
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 | 4A) 4B K AC L 4D M 4E N 4F O
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5A Z 5B | 5C \ 5D] 5e ~ 5F _
60 ° 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6A | 6B k 6C | 6D m 6E n 6F o
70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7A z 7B { 7C | 7D } 7E ~

Table 3-30 Acceptable Characters for Mnemonics Mn1

PC 3000 Function Blocks 3-87

El_Bisync.S

The ASCII code table is given for general reference.

ASCIl Table Hexadecimal - Character

00 NUL 01 SOH 02 STX 03 ETX 04 EOT 05 ENQ 06 ACK 07 BEL
08 BS 09 HT OA NL 0B VT 0C NP 0D CR 0OE SO OF sI
10 DLE 11 DCI1 12 DC2 13 DC3 14 DC4 15 NAK 16 SYN 17 ETB
18 CAN 19 EM 1A SUB 1B ESC 1C FS 1D GS 1E RS 1F US
20 SP 21 | 22 23 # 24 $ 25 % 26 & 27 '
28 29) 2A * 2B + 2C , 2D - 2E . 2F /
30 0 311 32 2 33 3 34 4 355 36 6 37 7
38 8 39 9 3A 3B ; 3C < 3D = 3E > 3F2
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 | 4A) 4B K AC L 4D M 4E N 4F O
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59Y 5A Z 5B | 5C \ 5D] 5e ~ 5F _
60 ° 61 a 62 b 63 ¢ 64 d 65 e 66 f 67 g
68 h 69 i 6A | 6B k 6C | 6D m 6E n 6F o
70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7A z 7B { 7C | 7D } 7E ~ 7F DEL

Table 3-31 ASCIlI Codes

Features Not Supported

This describes the operation of the EI_Bisync_S function block included in
Version 2.00 firmware onwards with the exception of the features below which
have not yet been implemented.

*Multi-block message transfer.

*Access to all the parameters of a function block instance as a single composite
parameter.

*32-bit IEEE packed floating point values (only 24-bit format for IEEE floating
point values are supported)

3-88 PC 3000 Function Blocks

El_Bisync_S

Parameter Atiributes

Name Type Cold Read Write Type Specific
Start Access Access Information
Port STRING '0A Oper Config
Baud ENUM _9600 Oper Config Enumerated |_75(0)
Values 300(1)
_600(2)
_1200(3)
~2400(4)
_4800(5)
_9600(6)
_19200(7)
_38400(8)
_57600(9)
_115200(10)
Wr_Protect BOOL No Oper Super Senses No(0)
Yes(1)
TXB_Max SINT 0 Oper Config See Note 1
Gid STRING b Oper Config
Status BOOL NOGO Oper Block NOGO(0)
Senses Go(1)
Error_No SINT 0 Oper Block Hi Limit 255
Lo Limit 0

Table 3-32 El_Bisync_S Parameter Atiributes

PC 3000 Function Blocks

3-89

Raw_Comms

RAW_COMMUNICATIONS FUNCTION BLOCK

STRING —|: Port
mow — | Tx_Baud
BOOL _: Tx_CTS_Ctl
mor —{ | rx_Baud
BOOL _: Rx_RTS_Ctl
ENUM _|: Data__Bits
ENUM _|: Parity
ENUM _|: Stop__Bits
STRING —|: Tx_Value
BOOL _|: Tx_Break
ENUM ""I: Tx_State _ _ _ _ _ _ ___ Tx_State " ENUM
soor. — | mx_Trig
ENUM ""I: Rx_State _ _ __ _ ____ Rx_State * ENUM
soor. — | rx_Trig Status BOOL
BOOL _|: Fish_Rx_Trig Rx_Error No SINT
STRING _|: Rx_Term Tx_Error _No SINT
DINT —: Rx_Max_Len Tx_State _Trk BOOL
sTRING —|__| Rx_Del Key Rx_State Trk BOOL
STRING —|: Rx_Del Echo Rx_Value STRING
BOOL _|: Rx__Echo Rx_Break BOOL

Figure 3-22 Raw_Comms Diagram

3-90 PC 3000 Function Blocks

Raw_Comms

Functional Description

The Raw_Comms Function Block provides facilities to directly control the
transmission and reception of messages over a serial link. Before reading this
description, you are advised to gain a general understanding of the PC3000
communications system by reading the PC3000 Communications Overview.

The Raw_Comms function block is available for applications where it is
necessary to have low level control of the serial communications port and have
the flexibility to construct or analyse messages exactly as transmitted or
received over a serial link. Because there is no protocol, no extra messages or
message formats are created by the driver.

The Raw_Comms block can be assigned to any serial port using the Port input
parameter (see 'PC3000 Communications Overview' section 'Assigning a
Communications Function Block to a Port').

Raw_Comms provides a wide range of low level facilities including :
*Direct access to messages as transmitted or received over the serial link.

*Independent control of message transmission and reception including
separate baud rate selection on transmit and receive lines.

*Message flow control using Clear To Send (CTS) and Request To Send.
This is not currently supported on LCM or ICM ports

*Selectable echoing of received characters when required
*User selectable delete sequence for character deletion in the receive buffer.

Developing user programs to operate with Raw_Comms is more complex than
using the protocol driver function blocks because the structure of messages and
timing will all need to be handled by the program.

Note: Unlike protocol specific communications driver function blocks,it is not
possible to use Slave or Remote Variables with Raw_Comms

Raw_Comms Usage

Typical applications for the Raw_Comms driver function block include :
*Communication with devices using simple non-standard protocols,

*Sending reports to serial line printers or to special purpose printers, for
example, for label generation.

*Communication with character based terminals such as DEC VT100 or
with simple display devices.

The Raw_Comms function block gives the user the lowest possible level of
interface to the serial ports on the PC3000. All serial data encoding parameters
such as baud rate and parity are user programmable. The block does the
minimum of processing on the received and sent characters in order to maintain

PC 3000 Function Blocks 3-91

Raw_Comms

maximum flexibility. Some simple facilities for echo, deletion and receive
string termination have been included in the block to aid programming but all
these can be disabled if not required.

Function Block Atiributes

Ty P ettt 8 60

ClasS: coeeerreeieeeereeerrcre e COMMS
Default Task:ccooovvevvimeiiiiiiiiiiieeeenns Task_1
Short List:coeeeiireiiereeieeneeeeereeeeenns Port Status
Memory Requirement:ccceccuvueeennnn 864 Bytes

Parameter Description

The Raw_Comms block has a total of 25 parameters. These conveniently break
down into seven groups which are configuration, transmit, transmit control,
receive, receive control, echo/deletion and status.

Driver Configuration Parameters

The Raw_Comms block has a number of inputs which configure various
aspects of the driver. Changing these parameters while the user program is
executing will have no effect on the driver, except under special circumstances -
see 'PC3000 Communications. Overview' section "Temporarily changing
configuration parameters'.

Port

The Port parameter is the two character address of the port to which the block
refers. The first character is a number from O to 5 representing the rack slot and
the second character is a letter representing the port within that slot. e.g. '0C'
would be port C on the LCM and if there were an ICM in slot 3 '3A"' would refer
to its top port.

Tx_Baud

The Tx_Baud parameter gives a choice of 11 different transmit baud rates from
75 baud up to 115.2 Kbaud.

3-92

PC 3000 Function Blocks

Raw_Comms

Enum Value Baud Rate
0 75
1 300
600
1200
2400
4800
9600
19200
38400
57600
115200

O (0O I N [0 MWD

—_
o

Table 3-33 Raw_Comms Transmit/Receive Baud Rate

Note:- That not all ports will be able to support all baud rates.
If the port chosen will not support the given rate an error will be
indicated when the function block is first run (see description of
Rx/Tx_Error_No). For details of which baud rates are
supported by given ports/modules please refer to the module
documentation.

Tx CTS_Cil

If the Tx_CTS_Ctl parameter is On then the transmitter will only send when the
CTS line is active. If the Tx_CTS_Ctl parameter is Off the transmitter will not
respond to the CTS line but will always transmit when requested. If CTS
transmit flow control is not available on the given port this parameter should be
set to Off.

If the facility is not available but the parameter is On then an error will be
indicated when the function block is first run (see description of
Rx/Tx_Error_No). For details of which ports/modules support CTS flow
control please refer to the module documentation.

Rx Baud

The Rx_Baud parameter is the same as Tx_Baud except that it refers to the
receive baud rate.

PC 3000 Function Blocks 3-93

Raw_Comms

Tx_RTS_CH

The Tx_RTS_Ctl parameter is used to request flow control for the receiver. If
Tx_RTS_Ctl is On the RTS output will be active if and only if the receiver is
ready to receive characters. If the parameter is set to Off RTS will remain active
always. If RTS flow control is not supported by the port then Tx_RTS_Ctl
should be Off or an error will be indicated when the function block is first run
(see description of Rx/Tx_Error_No). For details of which ports/modules
support RTS flow control please refer to the module documentation.

Data_Bits

The Data_Bits parameter sets the number of bits per character for both receive
and transmit. If this is set less than 8 then the most significant (8 -Data_Bits)
bits will be ignored when sending and assumed zero when receiving. The
number of bits per character available are 5, 6, 7 or 8 and they are represented
by enumerated values of _5, _6, _7 and _8.

Parity

The Parity parameter can be set to EVEN, ODD, SPACE, MARK or NONE. If
the Parity is NONE then only the start, data and stop bits are sent. If parity is set
to EVEN, ODD, SPACE or MARK the extra bit will be sent following the data
bits. On receiving this bit will be checked and an error indicated if it does not
comply to the Parity parameter setting.

Stop_Bits

The Stop_Bits parameter sets the number of stop bits expected by the receiver
and sent by the transmitter. There may be 1, 1.5 or 2 stop bits, represented by
the enumerated values _1, 1 S5and 2.

Transmit Parameters

Tx_Value

The Tx_Value parameter is used to hold the string to be transmitted. The string
may be up to 128 characters long. Where the Data_Bits parameter has been set
less than _8, only the specified number of least significant bits will be sent for
each character. One, two or three of the most significant bits of the character
will be ignored depending on the number of Data_Bits.

Tx_Break

When the Tx_Break boolean parameter is set to On any transmission currently
in progress will be aborted and a break condition will be generated on the serial
link. If characters are lost the Tx_Error_No will reflect this. Note that
transmitting of characters is not possible while Tx_Break is On.

3-94

PC 3000 Function Blocks

Raw_Comms

Transmit Control Parameters

In order to initiate transmission of the Tx_Value there are two transmit control
parameters. Both these parameters can be used to initiate transmission but one
is more readily suited to control from wiring and the other to control by
sequence program. The Tx_State parameter also indicates status of the
transmitter.

Tx_State

The Tx_State parameter can have values of OK, PENDING, ERROR and
WRITE which indicate the current state of the transmitter. Assigning Write to
this parameter from sequence program can be used to start the transmission of
the Tx_Value. For full details of transmitter operation see Transmitting Strings
page 3-108.

Tx Trig
The Tx_Trig parameter is provided to ease control of the Raw_Comms function

block by wiring. When the Tx_Trig goes from Off to On transmission is
initiated as described in Transmitting Strings page 3-108.

Receive Parameters

Rx Value

The Rx_Value string contains characters received via the serial port. For details
of how the receiving is controlled/buffered see Receiving Strings page 3-109

Rx Break

If the Rx_Break parameter is On it indicates that a break condition has been
detected on the receive line. When the break condition clears the Rx_Break
parameter will return to Off .

Receive Control Parameters

The Raw_Comms function block includes five parameters which control the
input of strings of characters. The parameters are outlined below and the full
details of the receiving process is described in Receiving Strings page 3-109

Rx_State

The Rx_State parameter is similar to the Tx_State parameter, having possible
values of OK, PENDING, ERROR, READ and FLUSH. In a similar way to the
Tx_State parameter the Rx_State parameter can be read to discover the current
state of the receiver and can also be written to control it. For details of how the
receiver is controlled see Receiving Strings page 3-109.

PC 3000 Function Blocks 3-95

Raw_Comms

Rx Trig
Rx_Trig, like Tx_Trig is designed to make it easy to control the receiving using

PC3000 wiring. When Rx_Trig goes from Off to On receiving is started, as
described in Receiving Strings page 3-109.

Flsh_Rx_Trig
Flush_Rx_Trig is like Rx_Trig except that it flushes the receive buffer instead

of starting receiving. Again there is a detailed description of the operation of
Flush_Rx_Trig in Receiving Strings page 3-109

Rx Term

The Rx_Term parameter is a one character long string which is used to identify
the end of a line of input (see Section **REF rx method). If the Rx_Term is left
blank the input will only be read from the receive buffer into the function block
Rx_Value parameter when Rx_Max_Len characters have been received.

Rx_Max_Len

Rx_Max_Len specifies the maximum number of characters which will be held
in the receive buffer before they are passed on to the Rx_Value. The
Rx_Max_Len should be in the range 1..128, 128 being the maximum length of
the Rx_Value string.

Echo And Deletion Parameters

A simple echo and delete facility is provided by the Raw_Comms block in
order to make it easier to implement data entry on a device which has no local
echo. The operation of the echo facility is explained in full in section Echo on
page 3-1.

Rx_Echo
This boolean turns On or Off the echo facility.

Rx_Del Key

This one character string parameter specifies the character which is to be used
for deletion, for example “$7F'. If left blank deletion will not be performed.

Rx_Del Echo

In order to delete a character on some screens it is necessary to echo a number
of characters, for example '<BS><space><BS>". The Rx_Del_Echo parameter
is used to specify this string of characters.

3-96

PC 3000 Function Blocks

Raw_Comms

Status Parameters

The final group of parameters are the status parameters, which indicate any
errors which occur in relation to receiving and transmitting.

Status

The Status parameter is a boolean parameter which takes the value Go or NoGo
to indicate if the communications is functioning without problems. If an error
occurs the Status parameter changes to NoGo and a non zero error number will
appear in the Rx_Error_No or Tx_Error_No accordingly.

Rx_Error_No

The Rx_Error_No indicates if an error has occurred in receiving of data. This
could be anything from requesting a receive baud rate which the serial port
could not support to framing errors while receiving. An Rx_Error_No of 0
indicates that no error has occurred. For full details of the error codes see
section Error Codes.

Tx_Error_No

The Tx_Error_No acts in a similar way to the Rx_Error_No except that it is
exclusively for errors which are relevant to receiving. For full details of the
error codes see section Error Codes.

Configuration

Before transmitting or receiving begins it is necessary set up the configuration
of the port. The configuration parameters, as described in Section Driver
Configuration Parameters should be chosen before the user program is run as
the configuration is fixed when the user program first begins executing.

Transmitting Strings

After configuring the Raw_Comms Function Block, a string can be transmitted
by placing the string value into the Tx_Value parameter and then triggering the
sending of that string using either the Tx_State parameter or the Tx_Trig
parameter.If the control of transmission is to be done from a sequence program
it is recommended that the Tx_State parameter be used as shown here :-

*The quick brown fox jumps over the lazy dog.';
3 (*Write*) ;

Port.Tx_Value :
Port.Tx_State :

Setting the Tx_State parameter to Write starts the transmission of the string.
While the string is being transmitted the Tx_State parameter changes to
Pending and then, on completion, reverts to Ok. If an error occurs at any stage
then the Tx_State will go to Error, the Tx_Status will go to NoGo and a non-
zero error code will appear in Tx_Error_No. If an attempt is made to transmit
again before the last string has been completely sent the old string will be

PC 3000 Function Blocks 3-97

Raw_Comms

aborted, the new one begun and an error logged in the Tx_Error parameter. For
this reason, normally, the transition following such a pair of assignments
contains a check for the transmission being completed, as shown here :-

(Port.Tx_State = 0 (*Ok*))

If it is required to trigger the transmission of the string by wiring then the
Tx_Trig parameter should be used. A transition from Off to On of this
parameter will initiate the sending of the Tx_Value. Initiating transmission
using Tx_Trig acts in exactly the same way as assigning Write to the State
parameter, with the state going to Pending until the Tx_Value has been sent.

Note:- That control characters can be embedded in transmitted
strings. These can be input from the PC3000 Programming
Station using a special $ 'dollar’' format which is described in the
appendix.

Flushing The Transmit Buffer

There are two methods to flush the transmit buffer. When using ST wiring, the
Tx_Value can be set to the empty string i.e. ' and then the Tx_Trig changed
from Off to On, as if sending the string. The Raw_Comms driver will treat this
as a special case and will abort the current transmission.

Alternatively, when controlled by sequence program, changing the Tx_State
from Pending to Ok will cause the driver to abort the current transaction, clear
the transmit buffer and reset the Tx_Error to 0 (Ok).

Receiving Strings

Receiving strings is controlled in a similar way to sending strings. The
receiving of characters by the Raw_Comms block is buffered to allow for echo,
automatic deletion and to allow processing by the user program to be line at a
time, rather than character at a time. Initially, for simplicity, it will be assumed
that echo and deletion are not required. For receiving it is always necessary to
consider the Rx_Term and Rx_Max_Len parameters. These two parameters
govern the point at which a received string is transferred from the receive buffer
within the function block into the Rx_Value. If an Rx_Term character has
been specified (i.e. the string is not empty) then as soon as that character is
received the input (including the terminating character) will appear in the
Rx_Value. For example if it was necessary to process input which was
terminated by <CR> then Rx_Term would be set to '$R' and an example value
received in Rx_Value might be 'This is some input$R'.

3-98 PC 3000 Function Blocks

Raw_Comms

Note:- That in ST strings
$R represents the Carriage Return character, ASCII 13.

The Rx_Max_Len parameter is used to specify the maximum number of
characters which are to be received before they are transferred into the
Rx_Value. If the Rx_Max_Len were set to 1 then characters would be input
one at a time. The Rx_Term and Rx_Max_Len when used together will cause
the Rx_Value to be produced when either of the conditions are met.

If the characters received were :-
'This_is_the_ first_sentence._This_is_a_longer_second_sentence.'

and Rx_Term and Rx_Max_Len were (.) and 30 respectively then the strings
received in Rx_Value would be :-

'This_is_the_ first_ sentence.’
'_This_is_a_longer_second_sente'

'nce.'

Note:- That if the received message contains unprintable control
characters these are shown on the PC3000 Programming Station
by using the $ 'dollar' format which is described in later
paragraphs.

Flushing The Receive Buffer

The receive buffer can be cleared at any time by setting Rx_State to Flush or
by using changing the Rx_Flsh_Trig parameter from Off to On. This does not
clear characters already the Rx_Value but clears any characters which have
been received and are queued to be copied into Rx_Value.

Echo And Deletion

The receive buffer within the Raw_Comms function block allows two more
facilities to be provided, namely echo and deletion.

Echo

If the Echo parameter is set to On then as characters are received they will be
echoed out of the transmitter. These echo characters will not interfere with any
transmission which is currently in progress but will be buffered up until the
transmitter is free. While characters are being echoed the Tx_State parameter
will be set to Pending in just the same way as if a string had been written by the
user program. For this reason it is necessary to check that the Tx_State is Ok or
Error before attempting to write strings when the Echo is On.

PC 3000 Function Blocks 3-99

Raw_Comms

Deletion

To support deletion of characters within the buffer before they reach the
Rx_Value there are two further parameters to be set up which are Rx_Del_Key
and Rx_Del_Echo. If deletion is required then the Rx_Del_Key parameter
should contain the character to be used for deletion. This will most often be
either “$7F or “$08'. If the deletion facility is not required then the
Rx_Del_Key should be left as an empty string. Because it is often necessary to
echo a number of characters in order to implement a deletion on a terminal the
characters echoed for the deletion character come from the Rx_Del_Echo
parameter. For example, on a VT100 terminal the delete key returns the code
7Fh and to delete a character from the display it is necessary to send
'<BS><space><BS>'.

To configure the deletion for a VT100 it is therefore necessary to set
Rx_Del_Key to "$7F' and Rx_Del_Echo to “$08 $08'. If Echo is not On it is
not necessary to set up the Rx_Del_Echo parameter but if deletion from the
receive buffer is still required then Rx_Del_Key should be defined.

Example

The example outlined here shows how a VT100 terminal could be used as a
simple operator control panel for a process. Details of panel driving will be
given but controlling of the process will be excluded to minimise complexity.

For this example the application will be assumed to be a simple batch process
which requires the batch number and a setpoint to be input before the process
runs. The panel is required to allow for entry of these values and, once entered,
to display batch start time, date and setpoint. Please enter katch rumber and
setpoint to start next run.

Batch mumer = 123456
Setpoint = 12.5

Batch mumber 123456, Setpoint 12.5 - Run started at 12:15:30 on 29-10-
90.

PASE 1........ Carpleted
PASE 2........ Carpleted
BPHASE 3........ Campleted

Batch rumoer 123456 carpleted at 12:20:47 an 29-10-90
Please enter katch rmumber and setpoint to start next run.
Batch rumber = _

Figure 3-23 Example Display Output

3-100

PC 3000 Function Blocks

Raw_Comms

While the process is running it should show when each phase of the process is
complete and, when the run is finished, show the finish time and date. It will
then return to requesting another batch number and set point for the next run.
An example of the display output after one run is shown in Figure 3-23.

Setting Up The Raw_Comms Block

The VT100 terminal will be assumed to have been set for 9600 baud, 7 data
bits, even parity, 1 stop bit and no local echo. It will also be assumed that the
DEL key is to be used for deletion and it produces the ASCII code 7Fh. No
flow control will be implemented in either direction as it is assumed that the
terminal and PC3000 have sufficiently large receive buffers. Table 3-34 shows
the function block parameter values which are needed for this example.

PC 3000 Function Blocks 3-101

Raw_Comms

Parameter Value Comments

Port 'OB' Port B on the LCM.

Tx_Baud _9600 Transmit baud rate 9600 baud.

Tx_CTS_Citl Off CTS flow control is not needed.

Rx Baud _9600 Receive baud rate 9600 baud.

Rx_RTS_Ctl Off RTS flow control is not needed.

Data_Bits 7 7 data bits (receive and transmit).

Parity Even Even parity (receive and transmit).

Stop_Bits 1 1 stop bit (receive and transmit).

Tx_Value " 1

Tx_Break Off It is not necessary to send BREAK in this application.

Tx_State Ok 1

Tx_Trig Off Tx Trig is not needed here because transmitting is
controlled by the sequence program using Tx_State .

Rx_State Ok 1

Rx Trig Off Rx_Trig is not needed here because receiving is
controlled by the sequence program using Rx_State .

Flsh_Rx Trig Off Flsh_Rx_Trig is not required here because it is not
necessary to flush the receive buffer in this application.

Rx Term '$R' Input is terminated by carriage return.

Rx_Max_Len 128 The maximum number of characters which can input is
128.

Rx_Del_Key '$7F" The VT100 delete key returns ASCII 7Fh.

Rx_Del_Echo '$08 $08' To delete a character on the VT100 it is necessary to
send '<BS><space><BS>'.

Rx_Echo On Echo by the PC3000 will be required.

T These are the initial values; the parameter will be controlled from the
sequence program.

Table 3-34 Example Parameter settings

Sequencing Control Of The Machine

The application example is assumed to be controlled entirely from sequence
program. The SFCs (Sequential Function Charts) for the application are shown
in Figure 3-9.

3-102 PC 3000 Function Blocks

Raw_Comms

Note:- That the three phases of the process, are exactly the same
in the example and their SFC/ST are only shown once as
Phase_n. The three phases of the process would obviously not,
be the same in practice but in the example the process control
part of the application is not shown for clarity.

MAIN: Begin Run:

|-<

Begin Run

Get Batch

Start Msg

Phase n:

Start n

Complt_n

Figure 3-24 Example Sequential Function Charts

PC 3000 Function Blocks 3-103

Raw_Comms

BeginRun: Get Batch , the first step within BeginRun , outputs a
message/prompt by assigning a string to the Tx_Value and then setting
Tx_State to Write .

Note:- The use of 'RL' (carriage return, line feed) to move
onto the next line allowing two lines to be displayed by sending
one string.

After the prompt has been sent Rx_State is set to Read which initiates input of
the batch number. The transition from GetBatch to Get_SP waits for the input
to be completed. The data entry is terminated either by the operator typing
carriage return or entering 128 characters. The 128 character limit is not
expected to be used but is necessary as this is the maximum number of
characters which can be held in the Rx_Value string. A test for Tx_State
being Ok is also included in the transition from GetBatch to Get_SP in order
to ensure that the batch number prompt has been displayed before the Get_SP
step puts up the setpoint prompt. Once the batch number string has been
entered Get_SP strips the carriage return from the end of the Rx_Value and
stores it away in a user variable.

Note:- That for simplicity in the example no checking has been
done on the string although in a real application it may be
necessary to do some form of validation of the batch number.
Also that the batch number is kept in string format. This allows
an alpha-numeric batch number to be used.

The Get_SP step, having dealt with the batch number, prompts for the setpoint
and initiates the read in a similar way as the GetBatch step. Once the setpoint
has been read in it is decoded (using the STRING_TO_REAL function) and
stored in a user variable by the StartMsg step. The rest of the StartMsg step
composes the ... Run started ...' message into Tx_Value using a number of
concatinations and then sends it by setting Tx_State to Write. The
CONCAT/ function is used to join strings together.

Note:- That no validation of the setpoint is shown here for
clarity although it may be necessary in a real application.

Phase_n: The three phases of the process are each implemented as macros

consisting of two steps and are all the same except in name. The Start n step
outputs the message PHASE n .' in the same way as was shown earlier. It is
within this step that any sequencing for the process would be included.
Following this the Cmpltd_n step outputs the '‘Completed.' message to show
that the phase is over.

End_Run:The End_Run step is very similar to the second half of the StartMsg
step except that it composes and starts transmission of the 'Batch ... completed

. message. After the message has been sent the flow of control returns to
BeginRun which prompts for the next batch run.

3-104

PC 3000 Function Blocks

Raw_Comms

ST For The Example Application MAIN Macro

INITIAL_STEP MAIN (* MACRO *)
TRANSITION
FROM BeginRun (* MACRO *)
TO Phase_1 (* MACRO *)
:= VT100.Tx State = 0(*0Ok¥*)
END_TRANSITION
TRANSITION
FROM Phase_1 (* MACRO *)
TO Phase_2 (* MACRO *)
:= VT100.Tx_State = 0(*0Ok*)
END_TRANSTITION
TRANSITION
FROM Phase_2 (* MACRO *)
TO Phase_3 (* MACRO ¥*)
:= VT100.Tx_State = 0(*0Ok¥*)
END_TRANSTITION
TRANSITION
FROM Phase_3 (* MACRO *)
TO End_Run
:= VT100.Tx_State = 0(*0Ok*)

END_TRANSITION

STEP End_Run

VT100_Tx_Value := CONCAT(IN1 := 'Batch number ' , IN2
:= BtchName.Val) ;
VT100_Tx_Value = CONCAT(IN1 := VTI100.Tx Value , IN2
= ! completed at ') ;
VT100_Tx_Value := CONCAT(IN1l := VT100.Tx Value , IN2
t= TIME_OF_ DAY TO_STR(IN :=
RT _Clock.Time_Of_Day))
VT100_Tx_Value := CONCAT(INl1 := VT10.Tx Value IN2
HE on ') ; VT100_Tx_Value =
CONCAT(IN1 := VT100.Tx_Value , IN2

= DATE_TO_EURO_STRING(IN:=
RT_Clock.Date)) ;

VT100_Tx_Value := CONCAT(IN1 := VT100.Tx_Value
- ".RIRL') ;

, IN2

PC 3000 Function Blocks

3-105

Raw_Comms

VT100_Tx_State := 3 (*Write*) ;
END_STEP
TRANSITION
FROM End_Run
TO BeginRun (* MACRO ¥*)
:= VT100.Tx_State = 0 (*0Ok¥*)
END_TRANSTITION

END_STEP (* MAIN *)

ST For The Example Application BeginRun Macro

STEP BeginRun : (* MACRO *)
STEP GetBatch

VT100_Tx_Value 1=
Please enter batch number and setpoint to

start next run.RSLBatch number = ' ;
VT100_Tx_State := 3 (*Write*) ;
VT100_Rx State = 3 (*Read*) ;
END_STEP
TRANSITION

FROM GetBatch

TO Get_SP
:= (VT100.Rx_State = 0(*Ok*)) AND (VT100.Tx_State = 0(*Ok*))
END_TRANSITION

STEP Get_SP

BtchName_Val := LEFT(IN := VT100.Rx Value , L :=
LEN(IN := VT100.Rx Value)- 1) ;
VT100_Tx Value := 'LSetpoint = ' ;
VT100_Tx_State 1= 3 (*Write*) ;
VT100_Rx_State := 3 (*Read*) ;
END_STEP
TRANSITION

FROM Get_SP
TO StartMsg

:= (VT100.Rx_State = 0(*Ok*)) AND (
VT100.Tx_State = 0(*Ok*))

END_TRANSITION

STEP StartMsg
Setpoint_Val := STRING_TO_REAL(IN := VT100.Rx Value) ;

3-106 PC 3000 Function Blocks

Raw_Comms

VT100_Tx_ Value CONCAT(IN1 := 'LBatch number ' , IN2 :=

BtchName.Val) ;

VT100_Tx_Value CONCAT(IN1l:= VT100.Tx Value , IN2 := ',

Setpoint ');
VT100_Tx Value = CONCAT(IN1 := VT100.Tx Value , IN2:=
REAL_TO_STRING(IN :=
Setpoint.Val, DPS:= 1))
VT100_Tx Value := CONCAT(IN1 := VT100.Tx Value , IN2 := '
- Run started at ') ;
VT100_Tx Value := CONCAT(IN1 := VT100.Tx Value , IN2 :=

TIME_OF_DAY TO_STR(IN:=
RT_Clock.Time_Of_Day))
VT100_Tx_ Value := CONCAT(IN1 := VT100.Tx_Value , IN2 := !
on ') ;
VT100_Tx_ Value := CONCAT(IN1l := VT100.Tx Value , IN2 :=

DATE_TO_EURO_STRING(IN :=
RT_Clock.Date)) ;

VT100_Tx_Value := CONCAT(IN1 := VT100.Tx Value , 1IN2 :=
".RL') ;
VT100_Tx_State := 3 (*Write*) ;
END_STEP

END_STEP (* BeginRun *)

ST For The Example Application Phase_ n Macros

STEP Phase_n : (* MACRO *)

STEP Start_n

VT100_Tx Value := 'Phase n. ! B
VT100_Tx_State := 3 (*Write*) ;
END_STEP
TRANSITION

FROM Start_n

TO Cmpltd_n

:= VT100.Tx_State = 0(*0Ok*)
END_TRANSITION

STEP Cmpltd_n
VT100_Tx_Value
VT100_Tx_State := 3 (*Write*) ;

END_STEP

END_STEP (* Phase_n *)

'Completed.RL' ;

PC 3000 Function Blocks 3-107

Raw_Comms

Display of Control Characters in Strings

On the PC3000 Programming Station, unprintable control characters can be
inserted into a string using the $ 'dollar' format. The same format is used when
displaying the contents of strings. The $ sign is used to indicate that the
character(s) that follow define a control character. Formats used are :

$nn - the character with ASCIl code 'nn' in
hexadecimal - eg. OA

$$ - the dollar sign

$ - the single quote

SL - line feed (ASCII OA in hexidecimal)
SN - newline (converted to a RL pair)

$pP - form feed (ASCII OC in hexidecimal)
$R - carriage return (ASCIl OD hexidecimal)
$T - tab (ASCIl 09 hexidecimal)

Table 3-35 Control Characters for Strings

Error Reporting

The error codes which appear in Rx_Error_No and Tx_Error_No are shown
in Table 3-36. Some of the error codes may appear when the block is first run
indicating a port initialisation failure. These errors will be logged in both
Rx_Error_No and Tx_Error_No and are marked with a { in the table. The
error code O represents OK and indicates that the block is operating normaly.
The table shows under error code 0 (OK) the situations in which the
Tx/Rx_Error_No s will return to zero following an error.

Note:- That it is possible to force the error codes back to zero by
writing Ok to the appropriate Rx/Tx_State parameter.

3-108 PC 3000 Function Blocks

Raw_Comms

Error description
Rx_Error_No Tx_Error_No P

0 0 OK
*The port has been initialised ok.

*A receive has been aborted by changing Rx_State from
Pending to Ok .

*A receive error has been cleared by changing Rx_State
from Error to Ok .

*A transmission has been aborted by changing Tx_State
from Pending to Ok .

*A transmit error has been cleared by changing
Rx_State from Error to Ok .

* A transmit has been completed successfully.
*A string has been received successfully.

*A receive buffer flush has been completed successfully.

1 1 NO PORT ADDRESS t

*The Port string has less than two characters.

2 2 REQUESTED DATA BITS NOT AVAILABLE t

*The specified port is not able to support the number of
data bits selected.

3 3 REQUESTED PARITY SETTING NOT AVAILABLE 1
*The selected Parity is not supported by this port.

4 4 REQUESTED STOP BITS NOT AVAILABLE t

*The selected number of stop bits is not supported by
this port.

5 5 RX BAUD RATE NOT AVAILABLE 1

*The chosen receive baud rate is not available on this
port.

6 6 TX BAUD RATE NOT AVAILABLE t

*The chosen transmit baud rate is not available on this
port.

7 7 RTS NOT AVAILABLE t

*RTS flow control is not available on this port.

8 8 CTS NOT AVAILABLE t

*CTS flow control is not available on this port.

Table 3-36 Raw_Comms Error Codes

PC 3000 Function Blocks 3-109

Raw_Comms

Rx_Error_No Tx_Error_No Error description

11 11 ILLEGAL SLOT +
*The slot number specified in the Port parameter does
not have any serial ports in it.

12 12 ILLEGAL PORT +
*The slot specified does not have a port with the
number specified in the Port parameter.

14 14 RX & TX BAUD RATES INCOMPATIBLE +
*The combination of receive and transmit baud rates
chosen are not possible on this port.

17 17 PORT IN USE t
* Another driver block has already attached to this port.

- 95 FORCED TX ERROR
*The Tx_State parameter has been set to Error to
force an error.

96 - FORCED RX ERROR
*The Rx_State parameter has been set to Error to
force an error.

97 - ECHO LOST
*Tx_Break was On when receiving a character which
should be echoed causing it to be lost.
*The echo buffer overflowed causing echo characters to
be lost.

98 - RX CHARS LOST *The receive
buffer has overflowed causing characters to be lost.
*Rx_State has been changed from Pending to Read
causing a new read fo begin after flushing the receive
buffer.

- 99 TX CHARS LOST *Tx_Break has
been turned on while characters were being transmitted
so some characters were lost.

*An attempt was made to transmit characters while
Tx_Break was on so the transmit was aborted.

100 - RX OVERRUN ERROR *An overrun
error was detected on a received character.

101 - RX PARITY ERROR * A parity
error was detected on a received character.

Table 3-36 Raw Comms Error Codes (continued)

3-110 PC 3000 Function Blocks

Raw_Comms

Rx_Error_No Tx_Error_No Error description

102 - RX PARITY & OVERRUN ERROR *A parity and an
overrun error were detected while receiving.

103 - RX FRAMING ERROR *A framing
error was detected on a received character.

104 - RX FRAMING & OVERRUN ERROR *A framing and
an overrun error were detected while receiving.

105 - RX FRAMING & PARITY ERROR *A framing and
a parity error were detected while receiving.

106 - RX FRAMING, OVERRUN & PARITY ERROR
*A framing, parity and overrun error were detected
while receiving.

Table 3-36 Raw_Comms Error Codes (continued)

PC 3000 Function Blocks 3-111

Raw_Comms

Parameter Atiribute

Type

Cold
Start

Read
Access

Write
Access

Type Specific
Information

Port

STRING

IOAI

Oper

Config

Tx_Baud

ENUM

600

Config

Config

Enumerated
Values

_75(0)
300(1)
~600(2)
1200(3)
2400(4)
4800(5)
9600(6)
19200(7)
~38400(8)
57600(9)
115200(10)

Tx_CTS_Ctl

BOOL

ON

Config

Config

Senses

OFF(0)
ON(1)

Rx Baud

ENUM

600

Config

Config

Enumerated
Values

_75(0)
~300(1)
~600(2)
1200(3)
1200(3)
2400(4)
~4800(5)
9600(6)
19200(7)
~38400(8)
~57600(9)
115200(10)

Rx_RTS_CHl

BOOL

ON

Config

Config

Senses

OFF(0)
ON(1)

Data_Bits

ENUM

Config

Config

Enumerated
Values

_5(0)
_6(1)
_7(2)
_8(3)

Parity

ENUM

SPACE

Config

Config

Enumerated
Values

EVEN(O)
oDD(1)
SPACE(2)
MARK(3)
NONE(4)

Stop_Bits

ENUM

Config

Config

Enumerated
Values

_10)
_1.5(1)
_2(2)

Table 3-37 Raw_Comms Parameter Attributes (continued)

3-112

PC 3000 Function Blocks

Raw_Comms

Name Type Cold Start Read Write Type Specific
Access Access Information
Tx Value STRING v Oper Oper
Tx_Break BOOL ON Oper Oper Senses OFF(0)
ON(1)
Rx Trig BOOL YES Oper Oper Senses NO(0)
YES(1)
Flsh_Rx Trig BOOL YES Oper Oper Senses NO(0)
YES(1)
Rx Term STRING " Oper Oper
Tx_State ENUM ERROR Oper Oper Enumerated | OK(0O)
Values PENDING(1)
ERROR(2)
WRITE(3)
Rx_Maox_Len SINT 1 Oper Oper High Limit 128
Low Limit 1
Rx_Del_Key STRING " Oper Oper
Rx_Del_Echo STRING t Oper Oper
Rx_Echo BOOL ON Oper Oper
Status BOOL GO Oper Block Enumerated |NOGO(0)
Values Go(1)
Rx_Error_no SINT 0 Oper Block High Limit 255
Low Limit 0
Tx_Error_no SINT 0 Oper Block High Limit 255
Low Limit 0
Tx_State_Trk BOOL YES Super Block Senses NO(0)
YES(1)
Rx_State_Trk BOOL YES Super Block Senses NO(0)
YES(1)
Rx_Value STRING t Oper Block
Rx Break BOOL YES Oper Block Senses NO(0)
YES(1)

Table 3-37 Raw_Comms Parameter Afiributes (continued)

PC 3000 Function Blocks

3-113

Siemens M S

SIEMENS_M_S FUNCTION BLOCK

Siemens M S

strive —{ | port Status BOOL
ENUM _|: Baud Error _No SINT
BOOL _|: Checksum Queue _Space | }— s
BOOL _|: Priority
TIME _|: Hold _Oftf
BOOL _|: Wr _Protect

-

Figure 3-25 Function Block Diagram

Functional Description

The Siemens_M_S function block supports serial communications on a
designated serial communications port using the Siemens 3964(R) protocol.
The function block implements the 3964(R) procedure and the RK 512
interpreter as specified in the Siemens protocol specification with modifications
to conform with the PC3000 function block methodology.

There are two features of the RK 512 interpreter which are not supported by the
PC3000 implementation :

*Follow on telegrams are not supported.
*The only "command type' supported is data block (D).

Before reading this description, you are advised to gain a general understanding
of the PC3000 communications system by reading the PC3000
Communications Overview.

This function block is required when designing or programming the PC3000 to
communicate with a single Siemens PLC using a serial link for a point-to-point
connection. Details in this manual will be useful when developing applications
that use the Siemens communications. driver function block. As the Siemens
driver can function in both master and slave modes, this document also includes
information on using both Slave and Remote Variables.

The following documents should be referenced if a detailed understanding of
the Siemens 3964(R) protocol is required :

*Siemens Aktiengesellschaft. Siemens COMS525 Programming Package for
the Communications Processors CP524 and CP525 (S5-DOS) User Guide
Volume 1 (chapter 7, section 5).

3-114 PC 3000 Function Blocks

Siemens M_S

*Siemens Aktiengesellschaft. Siemens COMS525 Programming Package for
the Communications Processors CP524 and CP525 (S5-DOS)User Guide
Volume 1 (chapter 7, section 4).

*Siemens Aktiengesellschaft. Siemens COMS525Programming Package for
the Communications Processors CP524 and CP525 (S5-DOS) User Guide
Volume 1 (chapter 7, section 4.1).

*Siemens Aktiengesellschaft. Siemens COMS525 Programming Package for
the Communications Processors CP524 and CP525 (S5-DOS) User Guide
Volume 1 (chapter 7, section 8.2).

Special Terminology
To comply with Siemens terminology the following term has been adopted :

Partner an alternative term for the remote device which is communicating
with the PC3000; this will generally be a Siemens PLC.

This function block deals with the protocol specific details of the
communications with a Siemens PLC and is supported by generic remote
variable and slave variable function blocks. The remote variable and slave
variable blocks are linked to the driver by means of a protocol specific address.
The remote variable blocks correspond to the master side of the driver and
initiate reads from and writes to remote devices. On the slave side, the slave
variable blocks define values which can be read or written by a remote device
using the protocol type specified in the address parameter, in this case 'SI' for
Slemens.

Note: This driver supports the Remote/Slave String and
Remote/Slave Integer function blocks.

Function Block Attributes

Y P it 870

Class: cooeoveeeriieeeeereeree e COMMS

Default Task:cccccoevvviiiiiiiiiiiinnnee. Task_1

N 176) o 3 3 1] S Port Status Queue_Space
Memory Requirement:............cccceennneee. 2580 Bytes

Parameter Description

Driver Configuration Parameters

The Siemens_M_S block has a number of inputs which configure various
aspects of the driver and must be set before the user program is run. Changing
these parameters while the user program is executing will have no affect on the
driver except under special circumstances - see 'PC3000 Comms. Overview'
section "Temporarily changing configuration parameters'. The only inputs to the

PC 3000 Function Blocks 3-115

Siemens M S

Siemens_M_S function block which may be changed while it is running are
Hold_Off and Wr_Protect.

Port

The Port parameter is the two character address of the port on which the
3964(R) procedure is to run. The first character is a number from O to 5
representing the rack slot and the second character is a letter representing the
port within that slot. e.g. '0C' would be port C on the LCM and if there were an
ICM in slot 3 '3A' could refer to its top port.

Baud

The Baud parameter gives a choice of 11 different rates from 75 baud up to
115.2 kbaud (seeTable 4-2) with a default of 9600 baud.

Note:- That not all ports will be able to support all baud rates.
This will be indicated by an error when the function block is
first run (see description of Error_No).

Enum Value Baud Rate
0 75
300
600
1200
2400
4800
9600
19200
38400
57600
115200

Table 3-38 Siemens_M_S Baud Rates

—_

N |0 (N[O [MWD

j—
o

Checksum

When the Checksum parameter is set to Yes the 3964R procedure, which
includes checksumming, is used. When Checksum is set to No the 3964
procedure is used which does not use checksumming. In all other respects the
two procedures are the same.

3-116

PC 3000 Function Blocks

Siemens M_S

Priority
The Priority parameter must be set so that one end of the link is High and the

other Low. This will be used to decide which end of the link must back down
in the case of contention on the link.

Hold_Off

The Hold_Off parameter is the length of time the driver will wait while a write
is protected before returning an error telegram to the partner. For an
explanation of how hold off works and suggested values for this parameter see
page 3-134.

Driver Status Parameters

The driver status is indicated by three output parameters in the Siemens_M_S
function block.

Status

The Status parameter is a boolean indication of the state of the link controlled
by the driver. If there are no problems with the link this parameter reads Go,
but when an error occurs it changes to NoGo. If the Status is NoGo the
Error_No parameter indicates the reason for the problem.

Error No

The Error_No parameter indicates the reason for any errors with the link. If
the link Status is Go then the Error_No will be O (OK). For full details of
error handling and error codes see Section Error Reporting, page 3- and Error
Codes page 3-.

Queue_Space

The Queue_Space parameter indicates the amount of space left in the queue for
remote parameter operations. If this reaches zero then it implies that the link
bandwidth is not sufficient to cope with the number of remote variable requests
being made and data will be lost. If this situation arises the parameter
pollingratesshould be reduced.

Driver Write Protection

Wr_Protect

The Wr_Protect input parameter on the Siemens_M_S driver block is a global
write protect which can be used to disable writing to all addresses through this
drivers port.

PC 3000 Function Blocks 3-117

Siemens M S

Remote Variable Operation

The master requests made by the PC3000 are controlled by having one or more
remote variable blocks. If only slave operation is required it is not necessary to
have any Remote Variable blocks. The Siemens_M_S driver supports
Remote_Str, Remote_Int and Remote_SW parameters.

Addressing

It is necessary to set up a protocol specific Address in the remote variable block
which is the address used to access the partner. An example address is shown
in Figure 4-2 The port is defined as in the Siemens_M_S function block Port
parameter as a rack slot number followed by a letter for the port within that slot.
The protocol specific part of the address begins with the CPU number which
would normally be from 1 to 7. This is followed by the command type letter
which should be D for data block. The data block number and data word
number then follow separated by a period. The length of block to be
fetched/sent can be specified in three ways.

*The first option is to end the address here, missing off the range type and
length/end address. This indicates an implied block length of one
word.e.g. 0A1D7.5

*The second option is to specify the length in words in which case a plus
sign precedes the length. e.g. 0A2D20.16+8

*The final alternative is to specify a range. In this case a dash follows the
data word number followed by the end data block number. e.g. 0A5SD78.1-
50

In practice either of the last two methods can be used to specify any address and
the alternative methods are only given for ease of use. For example
'0A1D78.10+1', '0A1D78.10-10" and '0A1D78.10'" all represent the same
address. Note that the range is inclusive.

OA 1 D 78 . 10 + 20
et A e e e

Port

CPUNo. Cmd.Type Data Block Data Word Range Type Length/End

Figure 3-26 Remote Variable Address Example

Usage Remote Str

Refer to the "PC3000 Communications. Overview' for further information on
Remote Variable Function Blocks.

The address which is specified in the Address parameter of the Remote_Str
block should have a block length which is less than half the length of the

3-118

PC 3000 Function Blocks

Siemens M_S

Using

Using

New_Value parameter when writing or an error will be flagged indicating
insufficient data to be sent. The words of data are represented by pairs of
characters in the string, most significant byte first.

of Remote_Int

Addressing of remote integers is exactly the same as addressing of remote
strings except for one respect. In the case of remote integers the address should
specify a block length of one or two words only. If the address specifies a
block length of one it can be used to read or write a one word integer. For
writes of a one word integer the least significant 16 bits of the value will be
written. If the address is two words long the whole integer will be written as
two words, most significant word first.

of Remote S W

Remote status words are a special form of integer which is separated into its
constituent binary digits. Addresses for status words should be one word long
only In fact as far as the Siemens driver is concerned the Status Word (SW) is
handled in the same way as an integer and so may be two words long. If a two
word long address is used the driver will not object but the most significant
word will be written as 0 and ignored when read. .

Slave Variable Operation

The slave half of the Siemens driver is used to simulate a Siemens PLC within
the PC3000. The addressing space of this pseudo PLC is defined by having a
number of slave variable function blocks. The Siemens driver supports
Slave_Str and Slave_Int. ONLY

Addressing

The address for the slave variable uses the same format as the remote variable
address except that it is has a two letter driver mnemonic, which in this case is
“SI' for Siemens , instead of the port address (see Figure 3-27)

SI 4 D 79 . 20 - 40
el <A <A wl ey

Driver

CPU No. Cmd. Type Data Block Data Word Range Type Length/End

Figure 3-27 Slave Variable Address Example

Using Slave Variables.

Refer to the 'PC3000 Comms. Overview' and the 'PC3000 Function Block
Manual' for further information on the use of Slave Variable Function Blocks.

PC 3000 Function Blocks 3-119

Siemens M S

The slave will respond to any reads/writes by the partner (remote device) if
they fall within the range specified by the Address parameter. If a number of
slave variable function blocks are made to have consecutive addresses e.g.
1D79.10-19, 1D79.20+10, 1D79.30... then the partner can write into more than
one slave variables with one block write (e.g. of words 10-30). For multi-
parameter writes the write protect is ORed together. e.g. if any parameter
within a block is write protected then the whole write will be blocked. Note
that coordination flags are not supported by the PC3000 Siemens driver. The
address is specified in terms of driver type rather than port address because a
slave variable can respond to requests from many ports which have the same
driver.

Note:- That like the remote integers the slave integers should
have an address which is one or two words long to represent 16
or 32 bit integers. Again the 32 bit integers are represented with
the most significant word first.

Write Protection.

There are two ways in which a slave variable can be protected against being
written via the Siemens communications protocol. In the driver block the
Wr_Protect parameter can be used to globaly protect against all writes through
the port specified in that blocks Port parameter. If, for example, a monitoring
device were to be attached to the PC3000 using Siemens 3964(R) then the
Wr_Protect parameter would be set to Yes to protect the PC3000 slave
variables against writes.

The second form of protection is on a per slave variable basis. Each slave
variable has a Mode parameter which can be either Rd_Wr, Rd_Only or
Wr_Once. In the Rd_Wr mode no restrictions are put on reading or writing of
the parameter by a remote device. When in the Rd_Only mode reads are freely
permitted but writes by a remote device will return an error reply telegram
informing the remote device that the write was rejected

Note:- That it is possible to hold off this error reply for a short
time to allow received values to be processed and the write
protection to be removed.

This will result in the error DB/DX DISABLED BY CF AT PARTNER being
logged in the remote device. Wr_Once mode is used in the situation where it is
necessary to process each value as it is received in the slave variable block. The
Wr_Once mode works in the same way as Rd_Wr mode initially, allowing
read and write by the remote device. The difference comes once the value is
written. When a write occurs while in Wr_Once mode it is permitted but
following this the Mode immediately changes to Rd_Only, protecting the
newly received value against being overwritten. Once the value has been
processed by the user program the Mode can then be restored to Wr_Once
ready for the next value to be received. This is done from the sequence
program simply by assigning Wr_Once to the Mode parameter, or in the

3-120

PC 3000 Function Blocks

Siemens M_S

wiring by making the Trig_Wr1 parameter go from Off to On which in turn
makes the Mode change to Wr_Once.

Hold Off.

If the write protection of a parameter is not on (i.e the slave variable Mode is
Rd_Wr or Wr_Once and the driver block Wr_Protect is Off) then a write to
that parameter will immediately be acknowledged back to the sender as shown
in Figure 3-28 and the value written into the parameter.

Hold
|- of -
Send RITES

Reply ACK

Write Protected
Figure 3-28 Writing With Write Protection Off

In order to stop the slave variable value being overwritten before the user
program has had a chance to process it, the Siemens driver can be made to delay
the write and its acknowledgement using the write protection facilities
described previously. If write protection is on when a write is received, the
write and its acknowledgement will be delayed until protection is turned off as
shown in Figure 3-29

PC 3000 Function Blocks 3-121

Siemens M S

Hold
| o

Send —WRITE}

Reply

Write Protected 1

Figure 3-29 Writing Delayed With Write Protection Is On

If the write protection is not removed before the Hold_Off time is exceeded an
error telegram will be returned and the write aborted. See Figure 3-30.

-

Hold
| o

Error=
DB/DX DISABLED
BY CF AT PARTNER

*

Send —WRITE]

Reply

NAK

Write Protected 1

Figure 3-30 Writing Fails Due To Write Protection Being On

The Hold_Off parameter in the driver function block should be set to the
maximum time needed to process the received data. This will ensure that, in the
case where write protection remains on, the sender will be informed as soon as
possible that the parameter is protected. If it is not necessary to hold off writes
for a given application the Hold_Off can be set to zero in which case writes to
protected parameters will be immediately reported back to the sender as an

error. This situation is shown in Figure 3-31.

3-122

PC 3000 Function Blocks

Siemens M_S

Hold Off=0
| Error=DB/DX DISABLED BY CF AT PARTNER.
Send RITEL
Reply NAK
Write Protected =

Figure 3-31 Writing With Hold Off Of O And Write Protection On

It is important to note that there is an upper limit imposed on the Hold_Off by
the senders time out. The sending half of the 3964(R) procedure specifies a
'Monitoring Time' after which the telegram is assumed to have been lost. This
monitoring time varies depending on baud rate and is shown in Table 3-41

Baud Rate Monitoring Recommended
Time Maximum Hold_Off
75 40s 38s 400ms
300 10s 9s 500ms
600 7s 6s 700ms
1200 5s 4s 800ms
2400 5s 4s 800ms
4800 5s 4s 800ms
9600 5s 4s 800ms
19200 5s 4s 900ms
38400 5s 4s 900ms
57600 5s 4s 900ms
115200 5s 4s 900ms

Table 3-39 Monitoring Times

Figure 3-32 shows the effect of setting the Hold_Off greater than the
monitoring time .

PC 3000 Function Blocks 3-123

Siemens M S

Sent ——WRITE

Error = REPLY

TELEGRAM TIMEOUT
Hold_Off
-

MonitOring tim

Error = SYNCHRON
ERROR BY PARTNER

Reply NAK |—

Write Protected | |
Figure 3-32 Writing With Hold Off Greater Than The Monitoring Time

Example

Note 1:- That two errors will be logged by the sender in this
situation if write protect remains on. The first error will indicate
that the send transaction has timed out. The second error will
occur because when the reply telegram finally arrives there will
be no send telegram to match it up with (because the send will
be assumed to have aborted). It is recommended that the
Hold_Off be set as low as possible and always less than the
recommended maximum shown in Table 3-41 This will leave
some leaway for latency and to allow time for the reply telegram
to reach the sender.

Note 2:- That latency time is not shown on Figures 3-42 to 3-
45. For example in Figure 3-42 the acknowledgment telegram
will, in fact, not be returned immediately after the send telegram
is received; there will be a small processing delay.

This section considers an example application. The full sequence programming
of the application will not be shown for clarity but the communications function
blocks will be discussed in detail.

In this example application a Siemens PLC is being used to control a machine.
This machine controller accepts commands written into a data word (say DW
70.1) on the PL.C and updates a status word (say DW 71.9) which can be read
by the PC3000. It also sends unsolicited alarm codes to a data word (say DW
50.0) within the PC3000. When first run the controller also reads a 6 character
batch name from the PC3000 (say DW 51.0-2). The exact workings of the
machine are not relevant to the example. Tables 3-40 -3-41 and -3-42 show

3-124

PC 3000 Function Blocks

Siemens M_S

the machine command codes, status bits and alarm codes assumed for this

example.
Command Code
run 1
hold 2
continue 3
stop 4
reset 5

Table 3-40 Example Machine Application Command Codes

Status Bit Number
running 0
holding 1

manual/auto

alarm active

battery warning

tolerance exceeded

m/c failed

emergency stop

0N O~ LN

fire |

Table 3-41 Example Machine Application Status Bits

Alarm Type Code
tolerance exceeded 1
m/c failure 2
emergency stop 3
manual override 4
firel 5

Table 3-42 Example Machine Application Alarm Codes

It is assumed that port B on the LCM is linked to the Siemens PLC. The
Siemens will be assumed to have been programmed to expect the 3964R
procedure with a baud rate of 9600 baud and to have its priority set to high.
The priority of the Siemens would be set to high in order that alarm messages

PC 3000 Function Blocks 3-125

Siemens M S

from the machine take priority over commands from the PC3000. The
Siemens_M_S function block would be set up as shown in Table 3-43 for this
application.

Parameter

Value

Comments

Port

IOBI

'0' means slot O in the rack (the LCM) and 'B' means port B.

Baud

9600 (6)

Checksum

Yes (1)

This parameter is used to choose between procedure 3964 and 3964R.
3964R, which is used in this example, is 3964 with the addition of a block
check character (checksum).

Priority

Low (0)

One end of the link should be Low priority and the other High . The a low
priority end of the link will back down in the case of a contention situation
arising.

Hold_Off

When an alarm code is received in the user program it should be dealt
with well within a second. If it has not been dealt with within 1s and
another alarm has occurred it will be signaled back to the PLC as write
protected.

Wr_Protect

No (0)

In this application it is never necessary to globally write protect all accesses.

Table 3-43 Example Siemens_M_S Function Block Settings

This example application requires four communications parameter function
blocks; two remote variables and two slave variables. The remote variable
blocks are a Remote_Int, to send commands, and a Remote_SW, to fetch the
machine status information. The slave variables are a Slave_Int, to receive the
alarm codes, and a Slave_Str, for the batch name to be read from. Notice the
difference between slave and remote variable blocks. The remote variables are
associated with the master half of the driver and fetch or send data. The slave
variable blocks are associated with the slave half of the driver and can be read
or written by the partner, i.e. a Siemens PLC.

In order to send the commands to the PLC it is necessary to create a remote
variable function block which in this example is called MC_Cmd. The
configuration of this block is shown in Table 3-44.

3-126

PC 3000 Function Blocks

Siemens M_S

Parameter

Cold Start Value

Comments

Address

*0B1D70.1'

This address indicates that the parameter should be sent out of
port B on the LCM to CPU number 1, DW 70.1.

Mode

Demand

Demand mode is chosen as the commands will only need to
be sent when the PC3000 sequence program requires.

Trig_Read

Off (0)

This parameter is not used for this application as it is not
necessary to read this address. The parameter can stay at its
default value of Off .

Trig_Write

Off (0)

This parameter is not used for this application and can be left
at its default value of Off . In this application the sequence
program will be controlling the writing of the commands which
means the State parameter is a more convenient way to
initiate the writing of commands.

Refresh

10s

As Demand mode is used for this application this parameter
is not used and can be left at its default value of 10s.

New Value

This is the value to be sent to the PLC to represent a machine
command.

Note- That only the least significant 16 bits will be sent or read
from the Siemens as one word block is specified.

State

Ok (0)

The State parameter is written to by the sequence program to
initiate the sending of the command.

Table

3-44 MC _Cmd Remote_Int Function Block Cold Start Values

In order to continuously poll the status of the machine from the Siemens PLC a
Remote_SW function block instance called MC_Stat is set up within the
PC3000 as in Table 3-45 It is assumed that the status only needs to be updated
at a rate of once every second on the PC3000.

PC 3000 Function Blocks

3-127

Siemens M S

Parameter Cold Start Value Comments

Address 'OB1D71.9' This address indicates reading of CPU 1, DW 71.9 from the
device connected to port B on the LCM. This is the address of
the status word in the Siemens PLC.

Mode R Cont (1) R Cont mode is chosen to read the status information from
the PLC at regular intervals.

Trig_Read Off (0) This parameter is not used for this application as the R_Cont
mode is used to trigger the reading. The parameter can be left
at its default value of Off .

Trig_Write Off (0) This parameter is not used for this application and can be left
at its default value of Off .

Refresh 1s A polling rate of 1 second will be assumed sufficient for this
application.

New Value Off As the machine status is not going fo be written the
New Value s will not be used and can remain at their
default values.

State Ok (0) The State parameter need not be initialised whenarameter

using the read continuous mode to control the polling. The
State an be left ot the default value and will be controlled by
the function block to initiate the reads.

Table 3-45 MC_Stat Remote SW Function Block Cold Start Values

The alarms from the Siemens PLC will be received by the slave half of the
driver. To control this a Slave_Int function block is generated which has been
called MC_Alarm. The cold start values for this are shown in Table 3-46.

3-128

PC 3000 Function Blocks

Siemens M_S

Parameter Cold Start Comments
Value

Address 'SI1D50.0' This address indicates that the block simulates a Siemens
address CPU 1, DW 50.0.

Trig_Wrl Off (0) The Trig Wr1 parameter is designed for convenience when
using wiring to control the write protection of the parameter. In
the case of this application alarm handling will be done by the
sequence program so this parameter will be left at its default
value of Off .

Mode Wr_Once (2) The Mode will initially be Wr_Once. This enables one write
but following that it changes the mode to Rd_Only. For a full
explanation of the operation see the text.

Changed No (0) The Changed flag is initially defaulted to No so that it is

possible to see when an alarm is received by the slave.

Table 3-46 MC_Alarm Slave_Int Function Block Cold Start Values

The batch name will be read from a slave string block in the PC3000 called
Batch_Nm. The cold start values for this block are shown in Table 3-47.

PC 3000 Function Blocks

3-129

Siemens M S

Parameter Cold Start Comments
Value

Address 'SITD51.0+3 This address indicates that the block simulates Siemens
addresses CPU 1, DW 51.0-2.
Note:- That three words can hold six ASCII charg

Trig_Wr1 Off (0) The Trig Wr1 parameter is designed for convenience when
using wiring to control the write protection of the parameter. In
the case of this application the batch number will be handled
by the sequence program so this parameter will be left at its
default value of Off.

Mode Rd_Only (1) The batch name is only read by the machine, not written so the
Mode should be set to Rd_Only for maximum security.

Changed No (0) The Changed flag is of no interest as the parameter is read
only so this flag can be left at its default of No .

Value " The Value will be filled in with the batch name by the

sequence program before the machine is set to run.

Table 3-47 Batch Nm Slave Str Function Block Cold Start Values

The Value parameter of the Batch_Nm will be filled in with the appropriate
string by the sequence program prior to sending the run machine command.

Controlling The Communications

The communications function blocks need to be controlled to a certain extent by
sequence programming. This is outlined here although the full application side
of the sequence program is not.

3-130

PC 3000 Function Blocks

cters.

Siemens M_S

init

Figure 3-33 Main SFC For The Example Application

The Sequential Function Chart (SFC) for the main control sequencing is shown
in Figure 3-46 with the Structured Text (ST) as follows: .

STEP init
MC_Cmd.New_Value := 5 ; (*reset¥*)
MC_Cmd.State := 3 (*Write¥*)
END_STEP

I

TRANSITION

FROM init

TO stop
:= MC_Cmd.State = 0 (*Ok¥*)
END_TRANSITION

STEP stop

MC_Cmd.New_Value := 4 ; (* stop *)
MC_Cmd.State := 3 (*Write*) ;
END_STEP
TRANSITION
FROM stop
TO run
:= (MC_Cmd.State = 0 (*Ok*)) AND
(run_proc.vVal = 1 (*On*)) ;

(* run -> On to start process *)

PC 3000 Function Blocks 3-131

Siemens M S

END_TRANSITION

STEP run :
Batch_Nm.Value := Next_Batch.val;
MC_Cmd.New_Value := 1 ; (* run *)
MC_Cmd.State := 3 (*Write*) ;
END_STEP
TRANSITION
FROM run
TO hold
:= (MC_Cmd.State = 0 (*Ok*)) AND

(hold.Val = 1 (*On*)) ;
END_TRANSITION

TRANSITION
FROM run
TO stop
:= (MC_Cmd.State = 0 (*Ok*)) AND
(run_proc.Val = 0 (*Off*));
END_TRANSITION

STEP hold :
MC_Cmd.New_Value := 2; (* hold *)
MC_Cmd.State := 3 (*Write*) ;
END_STEP

TRANSITION
FROM hold
TO run
:= (MC_Cmd.State = 0 (*Ok*)) AND
(hold.val = 0 (*Off*)) ;
END_TRANSITION

The four states names reflect the commands which are sent to the machine by
the ST within the steps. The init step sends a reset command to the machine to
initialise it. It starts by setting the New_Value to the command code reset and
then the State is set to Write. The exit transition from this step then waits for
the State to return to OK, indicating that the value has been written
successfully. The stop step is similar except that it does not move on until the
stop command has been sent and the run_proc boolean user variable is On. All
the other states and transitions work in a similar fashion to one or other of these
two. Notice the use of another boolean user variable to control the holding of
the process in a similar way to the run_proc user variable. Error handling has
been omitted for clarity. However it is vital that the exit transitions after
initiating a remote write should test for Error as well as Ok in the State. The

3-132

PC 3000 Function Blocks

Siemens M_S

example shown assumes that the link is perfect and would lock up if an error
did occur. In a real application it would be essential to consider the error
handling in detail.

Alarm Handling

ok

cancel a

alarm

Figure 3-34 Alarm Handling SFC For The Example Application

The Sequential Function Chart (SFC) for the machine alarm handling is shown
in Figure 3-34 with the Structured Text (ST) as follows:

STEP ok :
END_STEP
TRANSITION
FROM ok
TO alarm
:= MC_Alarm.Value <> 0 ;
END_TRANSITION

STEP alarm :

run.Val := 0 (*Off*) ; (* stop the machine *)
hold.val := 0 (*Off*) ;

END_STEP

TRANSITION

FROM alarm
TO cancel_a
:= Al _Clr.vVal = 1 (*On*) ;

(* setting Al_Clr.val On (1) clears the alarm
and acknowledges it *)

END_TRANSITION

PC 3000 Function Blocks 3-133

Siemens M S

STEP cancel_a :
Al_Clr.val := 0 (*Off*) ;
MC_Alarm.Value = 0 ;

(* clear the MC_Alarm slave variable to acknowledge the
alarm *)

MC_Alarm.Mode = 2 (* Wr_Once *);
(* Re-enable writes ready for next alarm *)

END_STEP

TRANSITION
FROM alarm
TO ok
=1
END_TRANSITION

Because the alarm code is received by the slave it is not necessary to initiate
any transactions with the partner. This simplifies the coding considerably. The

@ step does not contain any ST. It has a simple exit condition which causes
the sequence to move on to the step if Alarm.Val is non zero.

Note:- That the slave variable function block will change from
Wr_Once mode to Rd_Only mode to protect against any
alarms being missed when this happens.

In the step the run and hold booleans are both cleared to halt the
process. The alarm is cleared by the boolean Al_Clr.Val being set to On.
Al_Clr.Val going On moves the sequence program on to step cancel_a which
clears Al_Clr.Val, ready for the next alarm to be cleared. This step also sets
MC_Alarm.Val to 0 to indicate to the Siemens PLC that the alarm has been
noted/dealt with. MC_Alarm.Val will be polled by the Siemens PLC to detect
that the alarm has been acknowledged/cleared. Finally MC_Alarm.Mode is
reset to Wr_Once in order to re-enable writing of the alarm code by the PLC.

Status Reporting

The polled status bits may be used in many ways depending on the application
but for this example some of them will be displayed using the messages
function block. The following wiring will display the run/hold status and alarm
status on the messages line of the PC3000 programming station software. The
other status bits could be displayed in a similar manner if required.

Messages.P_Message := CONCAT(INl1l := SEL_STRING(G :=
MC_Status.Value_1 1INO := 'HOLDING ',IN1l :=
'RUNNING ') , IN2 := SEL_STRING
(G := MC_Status.Value_2 , INO := 'IN AUTO',IN1 :=
'IN MANUAL'));

3-134 PC 3000 Function Blocks

Siemens M_S

Messages.S_Message := SEL_STRING(G := MC_Status.Value_3 ,INO :=
vx%x% ALARM
ACTIVE **k%1 TNl := 'Ok');

Error Reporting

The majority of the error codes have been made to match the SYSTAT errors
used by Siemens so that they can be referenced in the COM 525 manual. There
is one error which is in the COM 525 manual which does not have a matching
error code due to implementation restrictions. The error BREAK (255 (FFh))
what has had to be moved to 127 (7Fh) for the PC3000. There are also some
extra errors which are specific to the PC3000 implementation which have codes
from 128 to 164 and 255.

Errors can be reported by the Siemens_M_S function block in three different
places. The errors are reported in the Error_No parameter of the
Siemens_M_S, slave variable and remote variable function blocks according to
the type of error involved. For example if, while sending a Remote_Str, there is
no response from the partner then error 226 (LINK ESTABLISHMENT
TIMEOUT) would appear in the Error_No parameters of the Siemens_M_S
and Remote_Str function blocks. In general

oIf an error can be directly attributed to a specific remote variable it is
reported to that parameter.

oIf an error is detected which implies a problem with the link it is reported
to the driver block.

*Only errors in the Address of a slave variable are reported in the slave
parameter block.

Table 3-48 shows the location where various types of errors are reported.

PC 3000 Function Blocks 3-135

Siemens M S

Block(s) Reported To

Type Of Error And When Detected

Driver

Remote

Slave

An error detected in the link, when it is idle, which cannot be
attributed to any parameter.

e.g. SYNCHRON ERROR BY PARTNER

When processing a remote variable read/write the reply was
gorbled.]

e.g. ERROR IN REPLY TELEGRAM FORMAT.

An error with the Siemens_M_S initialisation when the
Siemens_M_S function block first runs.

e.g PORT ERROR ILLEGAL PORT.

BREAK received at any time.

When processing a remote variable read/write an error in the
link was detected while sending the request.

e.g. ERROR DURING LINK ESTABLISHMENT.

When processing a remote variable read/write an error was
reported back by the

partner in a 'REPTEL'.
e.g. DB/DX ACCESS ERROR AT PARTNER.

An error in the Address parameter of a remote variable was
detected when a read/write was initiated by the remote
variable block.

e.g. CPU NUMBER OUT OF RANGE.

When processing a remote variable read/write no driver was
found on the port specified in the remote variable Address.

e.g. PORT ERR NO REMOTE PARAM SERV.

An error in the Address parameter of a slave variable was

detected when the slave parameter was first initialised.3

e.g. ADDRESS OUT OF RANGE.

When the slave variable was first initialised an overflow of the
systems slave variable or driver type tables occurred.

e.g. PORT ERROR TOO MANY SLAVE PARAMS.

Table 3-48 Error Reporting Locations

IThe garbled telegram cannot be attributed to the remote variable request in
progress because it could have been an incoming request for the slave_variable.

3-136

PC 3000 Function Blocks

Siemens M_S

2When a BREAK is detected any remote variable read/writes which are in
progress will be terminated with an error. If any further read/writes are initiated
before the BREAK is cleared they will be immediately terminated with an error.

3slave variables are declared to the driver when they are first run. The driver
then encodes and checks their addresses on its first execution after all blocks
have been executed once. This means that the SLAVE VARIABLE NOT
INITIALISED error code (255) may be seen in the slave variable Error_No for
a short time after running the user program. If this error persists it implies that
there is no driver of the name declared to deal with the slave variable.

Error Codes

The error codes listed in Table 3-49 correspond to the SYSTAT codes in
chapter 7 of the CP525 manual except for errors 128 to 164 and 255 which are
specific to the PC3000. The exception to this is the BREAK error which is 255
in the Siemens SYSTAT and 127 on the PC3000. Note that not all the errors
are seen in the driver block. Errors can also be flagged by the driver in the
slave and remote variable blocks (see footnotes at the end of the error codes).

PC 3000 Function Blocks 3-137

Siemens M S

Error_No Error description

0 OK
*No error has been defected.! 3
*The last operation was completed without error.2 3

33 ERROR IN DATA TYPE! 2
*The data type of the slave/remote variable was set to something other than *D'
(data block). At present only the *D' fype is supported.

34 ADDRESS OUT OF RANGE' 2
*The data block number specified in the slave/remote variable Address is greater
than 255. The data block number should be 0 to 255.
*The data word number specified in the slave/remote variable Address is greater
than 255. The data word number should be 0 to 255.
*There is an error in the format of the data block/word in the Address parameter
of the slave/remote variable.
*The block length specified in the slave/remote variable Address is greater than
65535. The block length should be 0 to 65535.
*The block end address specified in the slave/remote variable Address is greater
than 65535.The block end address should be 0 to 65535.
*The block end address specified in the slave/remote variable Address is less
than the start address.
*There is an illegal character following the data word number in the Address .
*The size of block specified is too large for the type of lave/remote block being
used.
*There are excess characters in the Address.

36 CPU NUMBER OUT OF RANGE'
*The CPU number specified for the slave/remote variable is not a legal one. It
should be 0 fo 7.

Table 3-49 Siemens M S Error Codes
3-138 PC 3000 Function Blocks

Siemens M_S

Error_No

Error description

38

LENGTH TOO GREAT

*The block length specified in the remote variable Address is too large for the length
of the string New Value

41

SYNCHRON ERROR BY PARTNERS

* A reply telegram arrived, though no request was made or it was not completed.

42

ERROR IN REPLY TELEGRAM FORMATS3
*1st byte is not O.

Note:- That the driver does not support follow on telegrams so $FF is illegal.

43

REPLY TO FETCH TOO LONGS

*The reply to a fetch contains too much data.

44

REPLY TO FETCH TOO SHORTS

*The reply to a fetch contains too little data.

45

REPLY TO SEND HAS DATAS

* A reply was received following a send which contained data.

47

REPLY TELEGRAM TIMEOUT? 3

*No reply telegram came from the partner within the monitoring time after sending a
FETCH/SEND telegram.

48

DB/DX DISABLED BY CF (OR WR_PROTECT) AT PARTNER?

*This error will be reported if writing to another PC3000 Siemens_M_S slave variable
which is write protected.

* Coordination flags are not supported by the driver at present so this error should
never occur when connected to Siemens PLC's.

49

HARDWARE ERROR AT PARTNER2 e.g. With CP525 as partner:
*Partner reports an illegal source/destination type detected.
*Partner reports a memory error in partner PC.

*Partner reports an error in handshake between CP/CPU at partner. This is only
applicable to SIEMENS PCs.

*Partner reports PC is in STOP state.

Table 3-49 Siemens M S Error Codes (continued)

PC 3000 Function Blocks 3-139

Siemens M S

Error_No Error description

50 MEMORY ACCESS ERROR AT PARTNER2 e.g. With CP525 as partner:
*Partner reports wrong area for condition code word.

*Partner reports date area does not exist.
*Partner reports data area too small (except DB/DX).

52 COMMAND ERROR AT PARTNER? e.g. With CP525 as
partner:

*Partner reports wrong first command letter in telegram header.

53 COMMAND TYPE ERROR AT PARTNER? e.g. With CP525 as partner:
*Partner reports wrong second command letter in telegram header.

54 PARTNER DETECTS WRONG TELEGRAM LENGTH? e.g. With CP525 as partner:
*Partner reports that the length encoded in the header does not agree with the actual
telegram length read.

35 PARTNER DETECTS SYNCHRON ERROR? e.g. With CP525 as partner:
*Partner reports that the order of telegrams is wrong.

56 NO COLD RESTART AT PARTNER? e.g. With CP525 as
partner:

*Partner reports that since power up no 'SYNCHRON' HDB has run.
*Partner reports that the mode selector is switched to STOP/PGR.

57 PARTNER SIGNALS SYS COMMAND ILLEGALZ e.g. With CP525 as partner:
*This is an incorrect reaction by the partner. The CP525 never outputs a system
command!

o8 UNKNOWN ERROR NUMBER FROM PARTNER?

*An unrecognized error number was received in the reply telegram from the partner.
Table 3-49 Siemens M_S Error Codes (continued)
3-140 PC 3000 Function Blocks

Siemens M_S

Error_No Error description

64 ERROR IN 1ST COMMAND BYTES
* 1st command byte is not 0.

Note: - That the driver does not support follow on telegrams so $FF is illegal.

127 BREAK?Z 3

* A break (continuous space condition) has been detected on the serial line.

128 ILLEGAL EVENTS

*An internal error within the block which should never be seen.

129 ILLEGAL STATES

*An internal error within the block which should never be seen.

130 SLAVE ADDRESS OVERLAP!

*Two slave addresses overlap.

145 PORT ERR NO ADDRESS?

*There are less than two characters in the Port parameter of the function block.

149 PORT ERR RX BAUD RATE NOT AVAILABLE4

*The receive baud rate requested is not available on this serial port.

150 PORT ERR TX BAUD RATE NOT AVAILABLE?

*The transmit baud rate requested is not available on this serial port.

155 PORT ERR ILLEGAL SLOT#

*The slot number selected is not legal. The slot number is the first character of the
Port parameter.

156 PORT ERR ILLEGAL PORT#

*The port number selected is not legal. The port number is the second character of
the Port parameter.

160 PORT ERR NO REMOTE PARAM SERV?

*The port given in the Address parameter of the remote variable function block does
not have a driver allocated to it.

Table 3-49 Siemens M_S Error Codes (continued)

PC 3000 Function Blocks 3-141

Siemens M S

Error_No Error description

161 PORT ERR PORT IN USE#
*The selected Port is already in use for another driver.

162 PORT ERR TOO MANY SLAVE PARAMS
*Too many slave variables have been declared to the system.

163 PORT ERR TOO MANY DRIVER TYPES.I
*Too many slave driver types have been declared to the system.

164 ILLEGAL WRITE HOLD OFF TIN\E4
*The Hold_Off time selected is foo long for this baud rate.

225 ERROR DURING LINK ESTABLISHMENT? 3
s After an <STX> was sent a non <DLE> or <STX> was received.

226 LINK ESTABLISHMENT TIMEOUTZ 3
* After sending <STX> the partner did not respond within the reply timeout.

227 ABORTED BY PARTNER? 3
*A <NAK> or other character was received while sending causing the send to be
aborted.

228 ERRORS AT END OF LINK? 3
* After sending a telegram it was rejected by the partner with a <NAK> or other non
<DLE> character.

229 TIMEOUT AT END OF LINK? 3
* After sending link termination <DLE> <ETX>**BCC** no acknowledgement was
received from the partner within the timeout.

241 LINK TERMINATION ERROR3
*A character {other than <NAK> or <STX> was received ofter link termination i.e
while the line was idle.

242 LOGICAL ERROR WHILE RECEIVING 3
*An illegal character was received following a <DLE> Only a <DLE> or <ETX> are
allowed to follow a <DLE>

243 CHARACTER TIME OUT

*Rx buffer not freed (i.e. no EOT)

Table 3-49 Siemens M S Error Codes (continued)

3-142

PC 3000 Function Blocks

Siemens M_S

Error_No Error description

244 BCC ERRORS

*The block check character (BCC) does not agree with the internally calculated value.
This is only applicable when Checksuming is on.

246 NO RX BUFFER FREES

* The receive buffer was not freed up within the timeout. This should never occur and
should be reported as a bug if it does.

* A character was received after an <STX> but before the link establishment was
acknowledged by a <DLE>

*The receive buffer has overflowed while building up a received message.

254 TRANSMISSION ERROR? 3

*An error has been detected while receiving a character. e.g. Framing, parity or
overrun errors have been detected.

255 SLAVE VARIABLE NOT INITIALISED
*The slave variable has not yet been initialised.

*There is no driver block in the user program which has the name given in the slave
variable Address.

Table 3-49 Siemens M_S Error Codes

I This error may be reported in a slave variable block when the user program is
first run.

2This error may be reported in a remote variable block when a read or write is
executed.

3This error may be reported in the Siemens_M_S function block at any time.

4This error may be reported in the Siemens_M_S function block when it is first
run.

PC 3000 Function Blocks 3-143

Siemens M S

Parameter Atiributes

Name Type Cold Start Read Write Type Specific
Access Access Information
Port STRING 'OA Oper Config
Baud ENUM _9600 Oper Config Enumerated | 75(0) _
Values _300(1)*
_600(2)*
_1200(3)*
~2400(4)*
_4800(5)*
_9600(6)*
_19200(7)*
~38400(8)
_57600(9)
_115200(10)
* Rates supported
by Siemens
Checksum BOOL No Oper Super Senses No(0)
Yes(1)
Priority BOOL Low Oper Super Senses Low(0)
High(1)
Hold Off TIME Os Oper Config High Limit 40s
Low Limit Os
Wr_protect BOOL No Oper Super Senses No(0)
Yes(1)
Status BOOL NOGO Oper Block Senses NOGO(0)
Go(1)
Error_No SINT 0 Oper Block High Limit 255
Low Limit 0
Queue_Space SINT 0 Oper Block High Limit 255
Low Limit 0

Table 3-50 Siemens M_S Parameter Attributes

3-144

PC 3000 Function Blocks

JBus M

JBus_M FUNCTION BLOCK

STRING —I: Port Status BOOL
ENUM —|_ Baud Error No SINT
TIME —: Time Out Queue_Space SINT
SINT —l: Max_Retries
BOOL —I: Tx_Mode
ENUM —I: Parity
ENUM —I: Stop_Bits

-

Figure 3-35 JBus_ M Function Block Diagram

Functional Description

JBus_M Function Block supports serial communications on a designated serial
communications. port using the JBus protocol in master mode. The Function
Block also supports the Modbus protocol which is identical to JBus except slave
locations are referenced with an offset of one. Detailed knowledge of the JBus
protocol is not normally required to use this function block. However, you may
refer to the Gould Modbus Protocol Reference Guide produced by Gould Inc.
Programmable Control Division for specific details if required. An outline of
the JBus protocol is included in the JBus_S function block section. See 'JTBus
Protocol Reference on page 3-180. Before reading this description, you are
advised to gain a general understanding of the PC3000 communications system
by reading the PC3000 Communications Overview.

This function block will be required when designing or programming the
PC3000 to use a JBus or Modbus interface that functions in master mode, i.e.
the PC3000 is connected to one or more JBus slave devices via a serial link.

The Jbus_M function block provides an JBus master driver and deals with the
protocol specific details of the serial communication. It is supported by generic
Remote Variable function blocks which are linked to the driver by means of a
protocol specific address. The Remote Variable blocks use the master driver
Function Block to initiate reads from and writes to remote devices. For more
details of the use of Remote Variable function blocks refer to the 'PC3000
Communications Overview' Further information on the Jbus protocol is given in
chapter 3 in the JBus_S function block description.

PC 3000 Function Blocks 3-145

JBus M

Function Block Attributes

Y P teeeeerree ettt 875

ClasS: coueeeieeiiecieeeee e COMMS

Default Task:ccevvueevieeniiiieiiiieneeeennee. Task 1

Short LISt oeeeeiiieeeeieeeeeeeee e Port Status Queue_Space
Memory Requirements:...............cc....... 1992 Bytes

Execution Time:ccccceevveernivcernnnnenns 23 Secs

Parameter Description

Driver Configuration Parameters

The JBus_M block has a number of configuration input parameters which
define various aspects of the driver and should be set before the user program is
run. Changing these parameters while the user program is executing will have
no effect on the driver, except under special circumstances - see 'PC3000
Communications. Overview' section "Temporarily changing configuration
parameters'.

Port

The Port parameter is the two character address of the port on which the JBus
protocol is to run. The first character is a number from O to 5 representing the
rack slot and the second character is a letter representing the port within that
slot. e.g. '0C' would be port C on the LCM and if there were an ICM in slot 3
'3A’ could refer to its top port.

Baud

The Baud parameter gives a choice of 11 different rates from 75 baud up to
115.2 kbaud (as shown in Table 3-51) with a default of 9600 baud.

Note: Not all ports will be able to support all baud rates. This
will be indicated by an error when the function block is first run
(see description of Error_No).

3-146 PC 3000 Function Blocks

JBus M

Enum Value Baud Rate
0 75
1 300
600
1200
2400
4800
9600
19200
38400
57600
115200

Table 3-51 JBus_M Baud Rates

O (0| N[MWD

—
o

Parity

The Parity parameter defines the parity used in transmission of characters. It
can take the values None, Even, Odd, Space or Mark.

Stop_Bits

The Stop_Bits parameter defines the number of stop bits used in tranmission of
characters. Allowable values are 1, 1.5 and 2.

Time_Out
The Time_QOut parameter specifies the length of time that the JBus_Master will
wait for a response message to a transmitted request. After this time the driver

assumes there is a transmission error and the the request may be retransmitted
or an error returned to the remote parameter block which initiated the request.

Maox_Retries

The Max_Retries parameter specifies the number of times that a request will be
retransmitted if a transmission error, such as a timeout or a message checksum
error, is detected. If a valid response is not received after this number of retries
an error is returned to the Remote Variable which initiated the request.

PC 3000 Function Blocks 3-147

JBus M

Driver Status Parameters

The driver status is indicated by three output parameters in the JBus_M function
block.

Status

The Status parameter is a boolean indication of the state of the link controlled
by the driver. If there are no problems with the link this parameter reads Go,
but when an error occurs it changes to NoGo. If the Status is NoGo the
Error_No parameter indicates the reason for the problem.

Error_No

The Error_No parameter indicates the reason for any errors with the link. If
the link Status is Go then the Error_No will be 0 (OK). For full details of
error handling and error codes see Table 3-52 on page 3-166.

Queue_Space

The Queue_Space parameter indicates the amount of space left in the queue for
Remote Variable transactions. If this reaches zero then it implies that the link
bandwidth is not sufficient to cope with the number of Remote Variable
requests being made and data will be lost. If this situation arises the parameter
polling rates should be reduced.

Remote Variable Operation

The master requests made by the PC3000 are controlled by one or more Remote
Variables. The JBus_M driver supports Remote_Bool, Remote_Real,
Remote_Int, Remote_Str and Remote_SW parameters.

Addressing

It is necessary to set up a protocol specific Address in the Remote Variable
block which is the address used to access the remote devices. An example
address format is shown in Figure 3-21 The port is defined as in the function
block Port parameter as a rack slot number followed by a letter for the port
within that slot.

The protocol specific part of the address begins with a slave id which specifies
the address of the slave device which should respond to a request. This is a two
digit hexadecimal number in the range O to 247. A slave id of zero specifies
broadcast mode where all slaves are addressed. This is followed by a four digit
address which identifies a starting address in the selected slave device. The next
character (upper or lowercase 'T') is optional and specifies whether the location
addressed is accessed as an input only. The specification of an input only
address is important as it can select a different address space in the slave device.
The last characters are data format characters and specify for each type of
Remote Variable how the data should be interpreted.

3-148

PC 3000 Function Blocks

JBus M

0A 01 1234 I R1
et ot et e it

Port Slave ID Address Input Only Data Format

Figure 3-36 An Example Remote Variable Address

Remote Bool Parameter

The address string of the block has the following format characters.
B - Bit addressing mode (1 bit).
R - Register addressing mode (1 word).

Examples
1000 - Default of bit addressing mode.
1000B - Bit addressing mode.
1000R - Register addressing mode.

Boolean values are encoded as follows.

Bit Mode - A boolean value of zero is converted to a bit result of zero. A
boolean value of one is converted to a bit result of one.

Word Mode - A boolean value of zero is converted to a word result of
zero. A boolean value of one is converted to a non-zero word result.

Remote Real Parameter
The address string of the block has the following format characters.
En - Register addressing, length = 1, exponent mode. Optional n = -9..9.
Llow,high - Register addressing, length = 1, limits mode, low < high.
Examples
3000 - Default of exponent mode, index = 0.
3000E - Exponent mode, index = 0.
3000E-4 - Exponent mode, index = -4.
3001E+2 - Exponent mode, index = 2.
3001L.1.5,3.5 - Limits mode, low = 1.5, high = 3.5.
30020.-4.0,+4.0 - Limits mode, low = -4.0, high = 4.0.

Real values are encoded as follows.

Exponent Mode - Word = integer value of Real * jpindex

PC 3000 Function Blocks 3-149

JBus M

Real-L
Limits Mode - Word = integer value of HI%W:,)\‘; * FFFFh

Remote Int Parameter
The address string of the block has the following format characters.

Bn - Bit addressing mode. Optional n = 1..32.

Rn - Register addressing mode. Optional n = 1 or 2.
Examples

2000 - Default of register addressing mode, length 1 word.

2000B - Bit addressing mode, length 1 bit.

2000R - Register addressing mode, length 1 word.

2001B12 - Bit addressing mode, length 12 bits.

2001R2 - Register addressing mode, length 2 words.
Integer values are encoded as follows.

Bit Mode - A byte is formed by extracting the required number of bits from the
double integer. The resultant byte is padded with zero bits if necessary.

Word Mode - No conversion necessary. If double integer defined as one word
long then least significant word is used.

Remote String Parameter
The address string of the block has the following format characters.
Bn - Bit addressing mode. Optional n < maximum length of string in bits.

Rn - Register addressing mode. Optional n < maximum length of string in
words.

Examples

4000 - Default of register addressing mode, length 1 word, 2 characters.
4000B - Bit addressing mode, length 1 bit.

4000R - Register addressing mode, length 1 word, 2 characters.
4001B12 - Bit addressing mode, length 12 bits.

4001R6 Register addressing mode, length 6 words, 12 characters.

String values are encoded as follows.

Bit Mode - A byte is formed by extracting the required number of bits from the
string. The resultant byte is padded with zero bits if necessary.

Word Mode - Words are encoded in integer type format with most significant
byte first and least significant byte second.

i.e. Word = Byte_0p; Byte_1, .

3-150

PC 3000 Function Blocks

JBus M

Block reads and writes are only possible using remote string parameters where
the data will be stored as the 16 bit words or bits packed into bytes. It is
therefore only suitable for character or integer storage unless conversion to
another data type is performed first.

Error Reporting
The following errors are reported by the JBus_M function block

Error_No Error description

145 PORT ERR NO ADDRESS
*There are less than two characters in the Port parameter of the function block.

149 PORT ERR RX BAUD RATE NOT AVAILABLE
*The receive baud rate requested is not available on this serial port.

150 PORT ERR TX BAUD RATE NOT AVAILABLE
*The transmit baud rate requested is not available on this serial port.

155 PORT ERR ILLEGAL SLOT
*The slot number selected is not legal. The slot number is the first character of the Port
parameter.

156 PORT ERR ILLEGAL PORT
*The port number selected is not legal. The port number is the second character of the
Port parameter.

160 PORT ERR NO REMOTE PARAM SERV
*The port given in the Address parameter of the remote parameter function block does
not have a suitable master driver allocated to it.

161 PORT ERR PORT IN USE

The selected Port is already in use for another driver.

Table 3-52 JBus M Error Codes

PC 3000 Function Blocks 3-151

JBus M

Remote Variable Error Codes

The following errors are reported by Remote Variable function blocks operating
with a serial communications port assigned to JBus_M.

Error_No Error description

128 ADDRESS STRING TOO SHORT
*The address string contained in the Address parameter is too short to be valid.

129 ADDRESS OUT OF RANGE
*The address specified in the Address parameter is not in the valid range of 0000 to
9999.

130 INVALID CHARACTER IN ADDRESS STRING
*An invalid character has been detected in the data format field of the Address
parameter.

131 NUMERIC FORMAT VALUE OUT OF RANGE
*A parameter size value specified in the Address parameter is out of range for that data
type.

135 INVALID SLAVE ID
*A slave id was specified that was not in the valid range of 0 to 247,

136 BROADCAST NOT ALLOWED
*A read was attempted using broadcast mode when only writes are allowed.

137 CANNOT WRITE TO INPUT PARAMETER
* A write was attempted to a slave location specified as input only in the Address
parameter.

Table 3-53 JBus_M Remote Varaible Error Codes
3-152 PC 3000 Function Blocks

JBus M

Parameter Atiributes

Name Type Cold Read Write Type Specific
Start Access Access Information
Port STRING '0A' Oper Config
Baud ENUM 9600 Oper Config Enumerated | 75(0)
Values _300(1)
_600(2)
_1200(3)
_2400(4)
_4800(5)
_9600(6)
_19200(7)
~38400(8)
_57600(9)
_115200(10)
Time_Out TIME 1s Oper Super High Limit 24day
Low Limit 100ms
Max_Retries SINT 2 Oper Super High Limit 1000
Low Limit 0
Tx_Mode BOOL RTU Oper Config Senses RTU(O)
Ascii(1)
Parity ENUM NONE Config Config Enumerated |EVEN(O)
Values ODD(1)
SPACE(2)
MARK(3)
NONE(4)
Stop_Bits ENUM 1 Config Config Enumerated | 1(0)
Values _1.5(1)
2(2)
Status BOOL NoGo Oper Block Senses NOGO(0)
Go(1)
Error_No SINT 0 Oper Block High Limit 255
Low Limit 0
Queue_Space SINT 0 Oper Block High Limit 255
Low Limit 0
Table 3-54 JBus_M Parameter Attributes
PC 3000 Function Blocks 3-153

JBus S

JBUS_S FUNCTION BLOCK

STRING —I: Port
SINT "“I: Unit_TId ______ ... Unit_Id SINT
mvov —[__| Baud Status BOOL
BOOL —I: Tx_ode Error No STINT
ENUM —I: Parity
ENUM —I: Stop_Bits
soor, — | Wr_Protect

-

Figure 3-37 JBus S Comms Diagram

Functional Description

This document details the JBus protocol slave driver for the PC3000 and the
associated function block.

Note:- That the Modbus protocol is also supported by this
driver; Modbus is identical to JBus except that slave locations
are referenced with an offset of one.

You are advised to gain a general understanding of the PC3000
communications system as given in the 'PC3000 Communications Overview'
prior to reading this document.

This function block will be required when designing or programming the
PC3000 to use a JBus or Modbus interface that functions in slave mode, i.e. the
PC3000 is connected to a JBus master device via a serial link.

The JBus_S function block provides a driver for JBus protocol that enables a
PC3000 serial port to function as a JBus slave. The driver block deals with the
protocol specific details of the communications and is supported by generic
Slave Variable function blocks. The Slave Variable blocks are linked to the
driver by means of a protocol specific address and define values which can be
read or written by a remote device using the protocol type specified in the
address parameter, in this case 'JB' for JBus. Parameter values can be placed in
either a register address space or a separate bit address space if appropriate. For
more details of the Slave Variable blocks see the PC3000 Communications
Overview'

3-154

PC 3000 Function Blocks

JBus S

Function Block Atiributes

TYPC ettt 8 80

Class: ..cooveeereceeeneeee e COMMS

Default Task:cccccooreueennnne. Task_1

Short List:ccoevvverrevceeririeennnnen. Port Status Wr_Protect Unit_Id
Memory Requirements: 1706 Bytes

Execution Time:ccceeuueennn. 17 p Secs

Parameter Descriptions

Driver Configuration Parameters

The JBus_S block has several configuration input parameters which define
various aspects of the driver and should be set prior to running the user
program. Changing these parameters while the user program is executing will
have no effect on the driver except under special circumstances - see 'PC3000
Communications, Overview' section "Temporarily changing configuration
parameters'. The only input parameter which can affect the block whilst running
is Wr_Protect .

Port

The Port parameter is the two character address of the port on which the JBus
protocol is to run. The first character is a number from O to 5 representing the
rack slot and the second character is a letter representing the port within that
slot. e.g. '0C' would be port C on the LCM and if there were an ICM in slot 3
'3A' could refer to its top port.

Baud

The Baud parameter gives a choice of 11 different rates from 75 baud up to
115.2 kbaud (as shown in Table 3-55) with a default of 9600 baud.

Note:- That not all ports will be able to support all baud rates.
This will be indicated by an error when the function block is
first run (see description of Error_No).

PC 3000 Function Blocks 3-155

JBus S

Enum Value Baud Rate
0 75
1 300
600
1200
2400
4800
9600
19200
38400
57600
115200

Table 3-55 JBus_S Baud Rates

N (0| N[O [~ WD

—
o

Parity
The Parity parameter defines the parity used in transmission of characters. It
can take the values Even, 0dd, Space or Mark

Stop_Bits

The Stop_Bits parameter defines the number of stop bits used in tranmission of
characters. Allowable valuesare 1, 1.5 and 2.

Unit_Id
The Unit_Id parameter specifies the JBus address to which the PC3000 will
respond. The range is O to 247.

If the Unit_Id is zero, a hardware selected Identifier is used. This is set by
either links /rotory switch on the LCM or a rotary switch on an ICM depending
upon which module the port is on.

3-156

PC 3000 Function Blocks

JBus S

LCM Links ICM Switch Unit_Id
0000 0 1
0001 1 16
0010 2 31
0011 3 46
0100 4 61
0101 5 76
0110 6 91
0111 7 106
1000 8 121
1001 9 136
1010 151
1011 166
1100 181
1101 196
1110 211
1111 1111

Table 3-56 JBus Hardware Selected Unit_Id

Tx_Mode

The Tx_Mode parameter specifies the type of encoding used to send and
receive JBus messages and can take the values RTU or Ascii. The difference
between the two modes is that Ascii format messages use printable characters
and are approximately twice the size of RTU format messages which use binary
coding. The message content in each mode is identical.

Wr_Protect

The Wr_Protect parameter when set inhibits all JBus writes. If a write
operation is attempted when write protection is on then an error reponse
message is generated by the driver.

Driver Status Parameters

The driver status is indicated by two output parameters in the JBus_S function
block.

PC 3000 Function Blocks 3-157

JBus S

Status

The Status parameter is a boolean indication of the state of the link controlled
by the driver. If there are no problems with the link this parameter reads Go,
but when an error occurs it changes to NoGo. If the Status is NoGo the
Error_No parameter indicates the reason for the problem.

Error No

The Error_No parameter indicates the reason for any errors with the link. If
the link Status is Go then the Error_No will be 0 (OK). For full details of error
codes see section Error Reporting.

Instances of Slave Variable function blocks are created within the PC3000 to
define parameters that may be read and written by a remote JBus device.
Currently most base data types and a few array data types are supported.

All of the slave variable block types have the following parameters :
Address protocol and address to access parameter (see later for details).
Value an Input/Output parameter that contains the parameter value.

Mode an Input/Output parameter to select read only, read and write, and write
once modes.

Trig Wrl on a rising edge causes the Mode to change to the write once mode.
Status output boolean to indicate block is operational.
Error_No output to indicate the reason for the block not being operational.

Slave Variable Operation Data is written to and read from the PC3000 via Slave
Variables.

Addresses

The address parameter consists of a two character protocol identifier followed
by protocol specific location and format information. For example,

Address String Protocol Identifier Location Format

'JB1234RT JB 1234 R1

A Slave Variable may be accessed via. any communications port configured to
support the protocol selected by the Protocol Identifier part of the address, in
this case 'JB' is used to select the Jbus_S driver function block.

The location part of the address is assigned a decimal value in the range 0000-
3999, (4000-9999 are reserved for future access to system parameters). Since
JBus has two address spaces, Bit and Register, the location only needs to be
unique in each of these spaces. Depending upon the variable type and format
selected, a variable may extend across several locations. For example a Slave
String function block (Slave_Str) with a location of 0000 and a format of B64

3-158

PC 3000 Function Blocks

JBus S

would occupy locations 0000-0063. Note that overlapping addresses will cause
one or more Slave Variables to enter an error state.

Consecutive variables may be accessed using a block read or write. Attempts to
read or write across 'gaps' between variables will cause an error to be returned
on JBus. A block read or write may also access a part of a variable if the
variable is more than one location long.

Whenever the Slave Variable is put into a write once mode, the next write to it
via. JBus will cause it to change to read only. This protects the value until the
PC3000 user program can acknowledge that it has seen it by changing the mode
back to 'write once'. This is described in more detail in the 'PC3000
Communications Overview' document.

The value of a Slave Variable is encoded into a 16 bit word for register
addressing and encoded into a packed byte for bit addressing.

Slave Bool Parameter
The address string of the block has the following format characters.

B - Bit addressing mode (1 bit).

R - Register addressing mode (1 word).
Examples

1000 - Default of bit addressing mode.
1000B - Bit addressing mode.

1000R - Register addressing mode.
Boolean values are encoded as follows.

Bit Mode - A boolean value of zero is converted to a bit result of zero. A
boolean value of one is converted to a bit result of one.

Word Mode - A boolean value of zero is converted to a word result of zero. A
boolean value of one is converted to a non-zero word result.

Slave Real Parameter
The address string of the block has the following format characters.

E<n> - Register addressing, length = 1, exponent mode. Optional n = -9..9.
L<low>,<high> - Register addressing, length = 1, limits mode, low < high.

S IEEE - Single Precision Floating Point (2 registers)

Examples

3000 - Default of exponent mode, index = 0.

3000E - Exponent mode, index = 0.

3000E-4 - Exponent mode, index = -4. 3001E+2 - Exponent mode, index = 2.
3001L1.5,3.5 - Limits mode, low = 1.5, high = 3.5.

PC 3000 Function Blocks 3-159

JBus S

3002L.-4.0,4+4.0 - Limits mode, low = -4.0, high = 4.0.

Real values are encoded as follows.
Exponent Mode - Word = integer value of Real * 10index

Real-L
Limits Mode - Word = integer value of HiZh__Lg‘vt,, * FFFFh

IEEE - Single Precision
Ist register: sign, exponent and top 7 bits of mantissa.
2nd register: bottom 16 bits of mantissa
e.g. float = 1.001
Ist reg = 3F80 (hex)
2nd reg = 20C5 (hex)

Slave Int Parameter
The address string of the block has the following format characters.

Bn - Bit addressing mode. Optional n = 1..32.

Rn - Register addressing mode. Optional n =1 or 2.
Examples

2000 - Default of register addressing mode, length 1 word.
2000B - Bit addressing mode, length 1 bit.

2000R - Register addressing mode, length 1 word.
2001B12 - Bit addressing mode, length 12 bits.

2001R2 - Register addressing mode, length 2 words.
Integer values are encoded as follows.

Bit Mode - A byte is formed by extracting the required number of bits from the
double integer. The resultant byte is padded with zero bits if necessary.

Word Mode - No conversion necessary. If double integer defined as one word
long then least significant word is used.

Slave String Parameter
The address string of the block has the following format characters.
Bn - Bit addressing mode. Optional n < maximum length of string in bits.

Rn - Register addressing mode. Optional n < maximum length of string in
words.

Examples
4000 - Default of register addressing mode, length 1 word, 2 characters.
4000B - Bit addressing mode, length 1 bit.

3-160 PC 3000 Function Blocks

JBus S

4000R - Register addressing mode, length 1 word, 2 characters.
4001B12 - Bit addressing mode, length 12 bits.

4001R6 - Register addressing mode, length 6 words, 12 characters.
String values are encoded as follows.

Bit Mode - A byte is formed by extracting the required number of bits from the
string. The resultant byte is padded with zero bits if necessary.

Word Mode - Words are encoded in integer type format with most significant
byte first and least significant byte second. i.e. Word = Byte_0p; Byte_1;, .

Slave Array Parameter

The array types supported currently are boolean, integer and real with each
containing eight values. They are equivalent to eight single parameters of the
same type occuring at consecutive addresses and all sharing the same format
specification.

Address Examples
If the following Slave Variables are created :

Param Block Type Address
A Slave_Bool JBO00O
B Slave_Str JBOOO1B7
C Slave_Int JBO0O08B16
D Slave_Real JBO0OO
E Slave_Int JB0O0O01
F Slave Str JBOOO2R4
The address mapping as seen by JBus would be :
Domain Location Param
Bit 0000 A
Bit 0001-0007 B
Bit 0008-0023 C
Register 0000 D
Register 0001 E
Register 0002-0005 F

PC 3000 Function Blocks

3-161

JBus S

Xycom Format Parameters

The PC3000 implementation of the JBus protocol supports 3 additional non-
standard parameter types. This is implemented specifically for the formatting of
datatypes for communication with a Xycom Terminal but may be used in any
application where full compliance with the JBus protocol is not required. The
main feature is the use of an extra JBus word to transmit the parameter
information.

Double Integer (DINT)

A xycom DINT parameter is specified using the character X for the protocol
specific field in the parameter address. eg JB1000X.

The parameter value is transmitted using two JBus registers as follows :
LS register = (abs(i) MOD 10000) * 2 + sign_bit
MS register = abs(i) DIV 10000

where sign_bit is 1 for negative i, otherwise O.

This format allows a range of -99999999 to +99999999.

Floating Point (REAL)

The address field for a xycom REAL parameter is specified as for a xycom
DINT. eg JB2000X.

The parameter value is transmitted using two JBus registers as follows :
LS register = (abs(Ry,;) mod 1000) * 16 + R, * 2 + sign_bit
MS register = abs(Ry,;) div 1000

where sign_bit is 1 for negative, otherwise 0 and R, is an integer value and R,
is an exponent of 10.

This format allows a range of -9999999 to 9999999 with seven signficant digits.

Duration (TIME)

The address field for a xycom TIME parameter has no special format
characters. eg JB3000.

The parameter value is transmitted using two JBus registers as follows :

MS register = Tggy * 10000 + Ty, * 100 + Tiyip
This allows a range of Oms to 6d_23h_59m_59s_999m:s.

3-162

PC 3000 Function Blocks

JBus S

Timing Information

The following table gives information on the slave execution times for several
different types of parameter operations. In the current PC3000 implementation
the JBus_S slave is normally associated with the high priority 10ms task. The
total execution time for all 10ms function blocks should not exceed 10ms and
thus the following table can be used to estimate the maximum block size that

can be used.
Operation Block Size Execution Parameter
Time (ms) Time (us)
BOOL word read 3 1.2 60
BOOL word write 3 1.6 43
DINT word read 1 0.8 66
DINT word write 1 0.8 48
STRING word read 20 3.1 69
STRING word read 40 5.3 69
STRING word write 20 3.7 70
STRING word write 40 6.0 71
REAL E mode read 1 1.3 326
REAL E mode read 8 4.5 326
REAL E mode write 1 0.8 187
REAL E mode write 8 3.7 181
REAL L mode read 1 2.1 385
REAL L mode read 8 5.1 385
REAL L mode write 1 0.9 254
REAL L mode write 8 4.4 249
REAL X mode read 1 2.2 600
REAL X mode read 6 7.8 646
REAL X mode write 1 2.7 212
REAL X mode write 6 5.0 206
STRING bit read 128 1.5 390
STRING bit write 128 1.9 361

Table 3-57 JBus_S Timing Information

Each JBus transaction consists of a request message and a response message.
The size of each message is related to the block size and the transmission mode

PC 3000 Function Blocks 3-163

JBus S

(RTU or ASCII.) Table 3-39 gives the sizes of the messages generated for each
type of parameter operation for RTU mode. ASCII mode messages are related
to RTU mode messages by the simple formula : Ascii = RTU * 2 + 1.

Function Address Block Size Request Response
Space Message Message
1/2 Bit n 8 5+ 2n
3/4 Word n 8 5+ 2n
5 Bit 1 8 8
6 Word 1 8 8
15 Bit n 10+le) 8
8
16 Word n 9+ 2n 8

Table 3-58 JBus S Message Sizing

The message size and the transmission baud rate has a direct effect on the
turnaround time for each transaction. Using :

T rXx = Request_Msg Size * Bits_Per Character/Baud_Rate
and

T tx
then

Response Msg Size * Bits_Per Character/Baud_Rate

T total = T rx + Slave Variable Execution_Time + T tx

JBus Protocol Reference

A definitive definition of Modbus protocol can be found in : ' Gould Modbus
Protocol Reference Guide ' produced by Gould Inc. Programmable Control
Division. Modbus is almost identical to Jbus except that slave device locations
are referenced with an offset of one.

The JBus protocol provides for one master and up to 247 slaves on a single
network. Only the master initiates a transaction. Transactions are either a
query/response type (only one slave is addressed) or a broadcast/no response
type (all slaves are addressed). A transaction consists of a single query and
single response frame or a single broadcast frame.

Certain characteristics of the JBus protocol are fixed such as the frame format,
handling of errors and functions performed. Others are user selectable such as
baud rate, parity, number of stop bits and transmission modes (ASCII or RTU)).
All characteristics are selected on startup and cannot be changed while the
system is running.

3-164

PC 3000 Function Blocks

JBus S

Messages transmitted by the master are in the form of a slave address, a
function code, data and an error checking code. The addressed slave, if there are
no message errors, performs the action defined by the function code. The slave
then sends a response message consisting of the slave address, action
performed, data acquired and an error checking code. No response is sent if the
message is a broadcast as indicated by an address of 0.

In general, the master can send another message to any slave as soon as it
receives a valid response, or after a user-selected time interval if no response is
received. All messages may be sent as queries generating a slave response.
However, only messages that do not need a response, such as a write function,
can be sent as broadcast messages.

Modes of Transmission

Two modes of transmission are available for use in a JBus system. The modes
are ASCII and RTU as described below. Only one mode at a time can be used

in a system.

Characteristic ASCII RTU
Coding System Hexadecimal (0-9,A-F) 8-bit binary
Start bits 1 1
Data bits 7 8
Parity bits (optional) 1 1
Stop bits 1or2 1or2
Error Checking Longitudinal Redundancy Check | Cyclical Redundancy Check

Table 3-59 JBus Modes of Transmission

Message Format

The protocol defines two types of message format which are ASCII and RTU.
The interpretation of fields within the two types of message are completely
identical. The major differences are the type of error check performed and that
approximately twice as many characters are used in ASCII. Instead of sending a
single 8-bit binary character, the equivalent pair of 7-bit ASCII (0-9,A-F)
characters are sent.

ASCIIl Framing

Framing in ASCII transmission mode is accomplished by the use of the unique
colon (:) character to indicate the beginning of a frame and carriage return (CR)
line feed (LF) to indicate the end.

PC 3000 Function Blocks 3-165

JBus S

Beginning of |Address |Function Data Error Check EOF
Frame

2-char 2-char N x 4-char 2-char CR LF
Colon 16-bits 16-bits N x 16-bits 16-bits

Table 3-60 JBus Message Framing

Remote Terminal Unit (RTU) Framing

The end of an RTU mode message is defined as a 3 character silence at the
working baud rate This timing may not be exact in the current implementation.
The start of the next message is assumed to have occurred when this break is
detected.

Beginning of Frame Address Function Data |(Error Check EOF

T1T2T3 8-bits 8-bits 8-bits | 16-bits TIT27T3

Table 3-61 JBus Message Structure

Address Field

The address field immediately follows the beginning of the frame and consists
of 8-bits (RTU) or 2 characters (ASCII). This field indicates the user defined
address of the slave that is to receive the message sent by the master. Each slave
should be assigned a unique address. In a broadcast message an address of O is
used. All slaves will respond to a broadcast message but no reply will be sent.

Function Field

The function code field tells the addressed slave what action to perform. The list
of supported functions is as follows :

3-166 PC 3000 Function Blocks

JBus S

Function Code Action
1or2 Read N bits
3or4 Read N words
5 Write 1 bit
6 Write 1 word
15 Write N bits
16 Write N words

Table 3-62 JBus Function Codes
where N = 1..256.

Data Field

The data field contains information needed by the slave to perform the specific
function or it contains data collected by the slave in response to a query.

Error Check Field

This field allows the master and slave devices to check a message for errors in
transmission. The error check field uses a longitudinal redundancy check (LRC)
in ASCII mode and a CRC-16 check in RTU mode.

Exception Responses

The supported exception response codes are listed below. When a slave detects
one of these errors it sends a response message to the master consisting of slave
address, function code, error code and error check fields. To indicate that the
response is a notification of an error bit 7 of the function code is set to 1.

Code Name Meaning
01 ILLEGAL FUNCTION The message received is not an allowable action
for address slave
02 ILLEGAL DATA ADDRESS The address referenced in the data field is invalid
04 FAILURE IN ASSOCIATED DEVICE An abortive error occurred. eg. Trying to write to

write o protected address.

Table 3-63 JBus Exception Response Codes

PC 3000 Function Blocks 3-167

JBus S

Example Exception Response :

Slave Address Function Exception Code Error Check

0A 81 02 73

Table 3-64 JBus Exception Response Codes

Note: Exception Response 03 - ILLEGAL DATA VALUE not
implemented as PC3000 user program should ensure that values
cannot exceed defined ranges.

Function Details

The purpose of this section is to define the general format for the specific
functions available in the JBus protocol. The format of the request message
from the master is shown followed by the response message sent by the slave.
The format is shown in RTU format which can easily be converted to ASCII
format. Words are transmitted most significant byte first. Bit functions allow a
maximum transfer of 1024 bits and word functions a maximum of 125 words in
one operation.

Read N bits (Function Code 01 or 02)

Request:
Byte 1 Slave Address (1..247).
Byte 2 Function Code (1 or 2).
Byte 3 & 4 Address of first bit to read.
Byte 5 & 6 Number of bits to read.
Byte 7 & 8 CRC-16 checksum.
Response :
Byte 1 Slave Address (1..247).
Byte 2 Function Code (1 or 2).
Byte 3 Number of bytes read, N.
Byte 4 to 4+N-1 bytes containing bits read.
Byte 44N & 4+N+1 CRC-16 checksum

The bits read are packed into bytes starting at bit O for the first address. The last
byte is padded with zero bits where necessary.

3-168 PC 3000 Function Blocks

JBus S

Example : Read bits from 0020 to 0056 from slave number 17.
Request : 11 01 00 14 00 25 CRC-16
Response : 11 01 05 CD 6B B2 OE 1B CRC-16

Read N words (Function Code 03 or 04)

Request :
Byte 1 Slave Address (1..247)
Byte 2 Function Code (3 or 4).
Byte 3 & 4 Address of first word to read.
Byte 5 & 6 Number of words to read.
Byte 7 & 8 CRC-16 checksum.
Response :
Byte 1 Slave Address (1..247).
Byte 2 Function Code (3 or 4).
Byte 3 Number of bytes read, N.
Byte 4 to 4+N-1 Words stored MSB byte, LSB byte
Byte 4+N & 4+N+1 CRC-16 checksum.

Example : Read bits from 0107 to 0110 from slave number 17.
Request : 11 03 00 6B 00 03 CRC-16
Response : 11 03 06 02 2B 00 00 00 64 CRC-16

PC 3000 Function Blocks 3-169

JBus S

Write 1 bit (Function Code 05)

Request :
Byte 1 Slave Address (1..247).
Byte 2 Function Code (5).
Byte3& 4 Address of bit to write.
Byte 5 Bit value. FF to set, 00 to clear.
Byte 6 Equals 0.
Byte 7 & 8 CRC-16 checksum.
Response :

Same as Request.

Example : Activate bit at address 0173 in slave number 17.
Request : 11 05 00 AD FF 00 CRC-16

Response : 11 05 00 AD FF 00 CRC-16

Write 1 word (Function Code 06)

Request :
Byte 1 Slave Address (1..247).
Byte 2 Function Code (6).
Byte3 & 4 Address of word to write.
Byte 5 & 6 Word value.
Byte 7 & 8 CRC-16 checksum.
Response :

Same as Request.

Example : Write 128 to word at address 0135 in slave number 17.
Request : 11 06 00 87 00 80 CRC-16
Response : 11 06 00 87 00 80 CRC-16

3-170 PC 3000 Function Blocks

JBus S

Write N bits (Function Code 15)
Request :

Byte 1 Slave Address (1..247).

Byte 2 Function Code (15).

Byte3 &4 Address of first bit to write.
Byte 5 & 6 Number of bits to write, n.
Byte 7 Number of bytes to write, N =

int(n/8)+1.

Byte 8 to 8+N-1

Bytes containing bits to write.

Byte 8+N & 8+N+1 CRC-16 checksum.
Response :

Byte 1 Slave Address (1..247).

Byte 2 Function Code (15).

Byte3 & 4 Address of first bit written.

Byte 5 & 6 Number of bits written.

Byte 7 & 8 CRC-16 checksum.

Example : Write 10 bits starting at address 0020 in slave number 17.
Request : 11 OF 00 14 00 OA 02 CD 00 CRC-16
Response : 11 OF 00 14 00 OA CRC-16

PC 3000 Function Blocks 3-171

JBus S

Write N words (Function Code 16)

Request :
Byte 1 Slave Address (1..247).
Byte 2 Function Code (16).
Byte 3 & 4 Address of first word to write.
Byte 5 & 6 Number of words to write, n.
Byte 7 Number of bytes to write, N =n * 2.
Byte 8 to 8+N-1 Words stored MSB byte, LSB byte
Byte 8+N & 8+N+1 CRC-16 checksum.

Response :
Byte 1 Slave Address (1..247).
Byte 2 Function Code (16).
Byte3 & 4 Address of first word written.
Byte 5& 6 Number of words written.
Byte 7 & 8 CRC-16 checksum

Example : Write 2 words starting at address 0135 in slave number 17.
Request : 11 10 00 87 00 02 04 00 OA 01 02 CRC-16
Response : 11 10 00 87 00 02 CRC-16

3-172 PC 3000 Function Blocks

JBus S

Error Reporting

If there is a specific JBus_S Function Block or JBus protocol error, the error is
reported via the Error_No parameter of the JBus Function Block. Errors
concerning a specific variable are reported via the associated Slave Variable

block.
Error No Error description

145 PORT ERR NO ADDRESS
*There are less than two characters in the Port parameter of the function block.

149 PORT ERR RX BAUD RATE NOT AVAILABLE
*The receive baud rate requested is not available on this serial port

150 PORT ERR TX BAUD RATE NOT AVAILABLE
*The transmit baud rate requested is not available on this serial port.

155 PORT ERR ILLEGAL SLOT
*The slot number selected is not legal. The slot number is the first character of the
Port parameter.

156 PORT ERR ILLEGAL PORT
*The port number selected is not legal. The port number, the second character of
the Port parameter, should be valid for the module, for example 'A' to 'C' for an
LCM port or 'A' to 'D' for an ICM port.

161 PORT ERR PORT IN USE
*The selected Port is already in use for another driver.

162 PORT ERR TOO MANY SLAVE PARAMS
*Too many slave parameters have been declared to the system.

163 PORT ERR TOO MANY DRIVER TYPES
*Too many slave driver types have been declared to the system.

Table 3-65 JBus_S Error Codes

PC 3000 Function Blocks 3-173

JBus S

Slave Variable Error Codes

Error_No

Error description

128

ADDRESS STRING TOO SHORT

*The address string contained in the Address parameter is too short to be valid.

129

ADDRESS OUT OF RANGE

*The address specified in the Address parameter is not in the valid range of 0000
to 3999.

130

INVALID CHARACTER IN ADDRESS STRING

*An invalid character has been detected in the data format field of the Address
parameter.

131

NUMERIC FORMAT VALUE OUT OF RANGE

*A parameter size value specified in the Address parameter is out of range for that
data type.

132

INVALID PARAMETER TYPE

*A slave variable block type has been created that cannot be handled by the current
implementation of the driver.

134

ADDRESS OVERLAP

*The address range specified in the Address parameter wholly or partly overlaps
the address range of another slave parameter.

135

MIXED MULTIELEMENT TYPES

*A slave variable block has array elements of differing types. The current
implementation of the driver cannot support mixed types.

Table 3-66 J Bus_ S Slave Variable Error Codes

3-174

PC 3000 Function Blocks

JBus S

Parameter Atiributes

Name Type Cold Start Read Write Type Specific
Access Access Information
Port STRING '0A Oper Config
Unit_Id SINT 0 Oper Oper High Limit 247
Low Limit 0
Baud ENUM _ 9600 Oper Config Enumerated | 75(0)
Values _300(1)
_600(2)
_1200(3)
_2400(4)
_4800(5)
_9600(6)
_19200(7)
~38400(8)
_57600(9)
_115200(10)
Tx_Mode BOOL RTU Oper Config Senses RTU(0)
Ascii(1)
Parity ENUM NONE Config Config Enumerated |EVEN(O)
Values ODD(1)
SPACE(2)
MARK(3)
NONE(4)
Stop_Bits ENUM 1 Config Config Enumerated | _1(0)
Values _1.5(1)
Wr_Protect BOOL No Oper Config Senses No(0)
Yes(1)
Status BOOL NoGo Oper Block Senses NOGO(0)
Go(1)
Error_No SINT 0 Oper Block High Limit 255
Low Limit 0

Table 3-67 JBus_S Parameter Attributes

PC 3000 Function Blocks

3-175

Toshib

aM

TOSHIBA_M FUNCTION BLOCK

STRING

ENUM

TIME

SINT

BOOL

alilals

Port

Baud

Time Out
Mex_Retries

Reset_Stats

[]

-

Toshiba M
Reset_Stats

Status
Error_No
Queue Space
Comms_ Error
Tot_Byte Tx
Tot_Byte Rx
Tot_Pack Tx

Tot_Pack Rx

Tot_Comm Err

Tot_CE_Err

Tot_EE_Err

Tot_Timeout

Tot_Retries

BOOL

BOOL

SINT

SINT

SINT

DINT

DINT

DINT

DINT

DINT

DINT

DINT

DINT

DINT

Figure 3-38 Toshiba M Function Block Diagram

3-176

PC 3000 Function Blocks

Toshiba_M

Functional Description

The Toshiba M Function Block supports serial communications on a designated
serial communications. port using the Toshiba PLC protocol. This function
block description includes the Toshiba Commands and Register Information for
quick reference. Before reading this description, you are advised to gain a
general understanding of the PC3000 communications system by reading the
PC3000 Communication Overview.

This function block will be required when designing or programming the
PC3000 to use a Toshiba PLC interface that functions in the master mode, i.e.
the PC3000 is connected via a serial link to a Toshiba PLC configured as a
slave.

You are advised to reference the following documents, if a detailed
understanding of the Toshiba PL.C protocol is required:

*EX250500 Toshiba Corporation. Toshiba Programmable Controller Computer
Link Module. CMP-6236 EX250/500 User's Manual. (Reference Number: UM-
EX25U-E104(Mar. '87(2)))

*EX2000 Toshiba Corporation. Toshiba Programmable Controller Computer
Link EX2000 User's Manual. (Reference Number: UM-EX2K***-EQ04(Mar.

88(1)))
The Toshiba_M function block provides a driver for the Toshiba Programmable

Logic controller (PLC) communication protocol for Toshiba devices EX250,
EX500 and EX2000; the function block allows the PC3000 to act as the serial
link master.

The function block deals with the protocol specific details of the
communications and is supported by generic remote variable function blocks.
The remote variable blocks are linked to the driver by means of a protocol
specific address and can request the polling or updating of parameters of a
communicating instrument via. a specified communication port.

For more details of the Remote Variable function blocks see the "'PC3000
Comms. Overview'.

Only the ASCII version of the protocol is supported. The driver always
operates in Even Parity.

Function Block Attributes

TYPC ittt 8 88

Class: cooeeveeeeerirnrree e COMMS

Default Task:ccoeevvvunerennnnnees Task_1

Short List: ccueeevvieeeeeeieieeeeneens Port status Queue_Space Comms_Error
Memory Requirement:............. 2026 Bytes

PC 3000 Function Blocks 3-177

Toshiba M

Parameter Descriptions

Driver Configuration Parameters

Port

Baud

The Toshiba_M block has two configuration input parameters Port and Baud
which configure the driver and should be set prior to running the user program.
Changing these parameters while the user program is executing will have no
affect on the driver except under special circumstances - see 'PC3000 Comms.
Overview' section "Temporarily changing configuration parameters'. The other
input parameters can be changed while the user program is running.

The Port parameter is the two character address of the port on which the
Toshiba protocol is to run. The first character is a number from O to 5
representing the rack slot and the second character is a letter representing the
port within that slot. e.g. '0C' would be port C on the LCM and if there were an
ICM in slot 3 '3A' could refer to its top port.

The Baud parameter gives a choice of 6 different rates from 300 baud up to
9600 baud (as shown in Table 4-20) with a default of 9600 baud.

Note:- That not all ports will be able to support all baud rates.
This will be indicated by an error when the function block is
first run (see description of Error_No).

Enum Value Baud Rate
0 300
1 600
2 1200
3 2400
4 4800
5 9600

Table 3-68 Toshiba_M Baud Rates

Time_Out

The Time_Qut parameter specifies the length of time that the Toshiba Master
will wait for a response message to a transmitted request. After this time the
driver assumes there was a transmission error and the request may be
retransmitted or an error returned to the remote variable block which initiated
the request.

Time Out defaults to 1 Second.

3-178

PC 3000 Function Blocks

Toshiba_M

Maox_Retries

The Max_Retries parameter specifies the number of times that a request will be
retransmitted if a transmission error, such as a timeout or a message checksum
error, is detected. If a valid response is not received after this number of retries
an error is returned to the remote variable block which initiated the request.

Max_Retries defaults to 2, so a request will be sent three times before an error
is reported and the request aborted.

Driver Status Parameters

The driver status is indicated by three output parameters in the Toshiba_M
function block.

Status

The Status parameter is a boolean indication of the state of the link controlled
by the driver. If there are no problems with the link this parameter reads Go,
but when an error occurs it changes to NOGO. If the Status is NOGO the
Error_No parameter indicates the reason for the problem.

Error No

The Error_No parameter indicates the reason for any errors with the link. If
the link Status is Go then the Error_No will be 0 (OK). For full details of
error codes see Error Reporting section on page 3-

Queue_Space

The Queue_Space parameter indicates the amount of space left in the queue for
remote parameter operations. If this reaches zero then it implies that the link
bandwidth is not sufficient to cope with the number of remote variable requests
being made and data will be lost. If this situation arises the parameter poling
rates should be reduced.

Comms_Error

The Comms_Error parameter indicates the status of the last transaction
executed by the driver. If there was some error detected then this will be
reflected here. It should be noted that if many transactions are occurring then
any error detected and reported will only remain here until the next transaction
has completed.

Driver Statistical Parameters

The driver statistical data is indicated by nine output parameters in the
Toshiba_M function block.

PC 3000 Function Blocks 3-179

Toshiba M

Reset Stats

The Reset_Stats parameter is used to reset all the statistical information
outputs. This is done by setting the boolean value to Yes. The parameter
automatically changes to No once the statistical outputs have been reset.

Tot Byte Tx

The Tot_Byte_Tx parameter indicates the total number of bytes that have been
transmitted by the driver since either the start of execution of the driver or, the
last reset of the statistical outputs.

Tot Byte Rx

The Tot_Byte_Rx parameter indicates the total number of bytes that have been
received by the driver since either the start of execution of the driver or, the last
reset of the statistical outputs.

Tot Packet Tx

The Tot_Packet_Tx parameter indicates the total number of packets that have
been transmitted by the driver since either the start of execution of the driver or,
the last reset of the statistical outputs.

Tot Packet Rx

The Tot_Packet_Rx parameter indicates the total number of packets that have
been received by the driver since either the start of execution of the driver or,
the last reset of the statistical outputs.

Tot Comm_Err

The Tot_Comm_Err parameter indicates the total number of communications
errors that have been detected by the driver since either the start of execution or,
the last reset of the statistical outputs. It includes both the Tot_ CE_Err and
Tot_EE_Err values as well as the total number of timeouts, checksum errors
and any other errors that may have been detected during the
transmission/reception process.

Tot CE_Err

The Tot_CE_Err parameter indicates the total number of Computer Link
Errors that have been received from the Toshiba EX device and detected by the
driver since either the start of execution or, the last reset of the statistical
outputs.

Tot EE Err

The Tot_EE_Err parameter indicates the total number of Erroneous Errors
that have been received from the Toshiba EX device and detected by the driver
since either the start of execution or, the last reset of the statistical outputs.

3-180 PC 3000 Function Blocks

Toshiba_M

Tot Timeouts

The Tot_Timeouts parameter indicates the total number of timeouts that have
been detected by the driver since either the start of execution or, the last reset
ofthe statistical outputs. A timeout occurs when the time between transmitting a
request and receiving the response from the Toshiba device exceeds the limit set
by the input parameter Time_QOut.

Tot Retries

The Tot_Retries parameter indicates the total number of retries that have
occurred since either the start of execution or, the last reset of the statistical
outputs. A retry occurs when either a timeout is detected or some error is
detected in the communications process.

Remote Variable Operation

The requests made by the PC3000 are controlled by one or more remote
variable blocks.

The Toshiba_M driver currently supports the Remote_Int, Remote_Str and
Remote_SW block types.

Addressing

It is necessary to set up a protocol specific Address in the remote variable block
which is the address used to access the remote devices. This address is made up
as follows.

The port is defined as in the function block Port parameter as a rack slot
number followed by a letter for the port within that slot.

The protocol specific part of the address begins with a Station Number which
specifies the Toshiba device which should respond to the request. This consists
of either one or two characters depending upon the Toshiba device to which the
request is being sent. For an EX250 or EX500 Toshiba device the address is one
character in the range '0' to '7', as only eight devices can be connected together
on one serial link from the host computer.

For an EX2000 Toshiba device the Station Number is two characters in the
range '01' to '32' if the EX2000 device is on a RS485 serial link or, it is in the
range '01' to '08' if it is on a RS422 serial link, again these are limited by the
number of devices that can be placed on one serial link from the host computer.

This is then followed by the Command that is to be executed on the Toshiba
device. The Command is always a two character mnemonic as described in
Toshiba documentation for an EX250 or EX500 device or for an EX2000
device.

The end of the address is dependent upon the command specified. In the case of
the Device / Register read or write commands the address must end with the
Device / Register type, the start Device / Register and the number of Device's /
Register's to be read or written. The format of this information is shown in the

PC 3000 Function Blocks 3-181

Toshiba M

examples below and can also be found in the related Toshiba documents. With
any other command there is no additional information required.

Device / Register read and write commands, DR or DW, may optionally be
specified as D?; the appropriate read or write mnemonic will be substituted
internally depending on whether a read or write operation is triggered.

OA 1 ST
ot o ot

Port Station Command

Figure 3-39 Example 1 of Remote Variable Address

Note 1: Example in figure 3-39 shows a 'Status Read'
command issued to an EX250/500 device.

0A 01 EC
ot oy ot

Port Station Command

Figure 3-40 Example 2 of Remote Variable Address

Note 2: Example in figure 3-40 shows an 'EX Control'
command issued to an EX2000 device.

0B

Port

03 DR T 12 : 1
o ot ot ot ot e

Station Command Register Type Start Number Separator Number of Registers

Figure 3-41 Example 3 of Remote Variable Address

Note 3:Example in figure 3-41 shows a 'Device/Register
Read' command issued to an EX2000 device to read Timer
Register 12.

0B

Port

7 DW YW 01 : 5
o ot ot ot et i

Station Command Register Type Start Number Separator Number of Registers

Figure 3-42 Example 4 of Remote Variable Address

Note 4: Example in figure 3-42 shows a 'Device/Register

3-182

PC 3000 Function Blocks

Toshiba_M

Write' command issued to an EX250/500 device to write to 5
External Output registers starting at register 1..

OB 10 Dw D 034 , 2
o et ot et ot d it

Port Station Command Register Type Start Number Separator Number of
Registers

Figure 3-43 Example 5 of Remote Variable Address

Note 5: Example in figure 3-43 shows a 'Device/Register
Write' command issued to an EX2000 device to write to 2 Data
Registers starting at register 34.

OB 10 D? D 034 : 2
e et e et ot ot ot

Port Station Command Register Type Start Number Separator Number of
Registers

Figure 3-44 Example 6 of Remote Variable Address

Note 6: Example in figure 3-44 shows a 'Device/Register Read
or Write' command (depending on trigger condition) issued to
an EX2000 device to write to 2 Data Registers starting at
register 34.

OB 5 DW Y 01B 4
e et e e ot ot T

Port Station Command Register Type Start Number Separator Number of
Registers

Figure 3-45 Example 7 of Remote Variable Address

Note 7: Example in figure 3-45 shows a 'Device/Register
Write' command issued to an EX250/500 device to write to 4
External Output Devices starting at device 1B (Module 1,
Channel B). This will write to Devices Y1B, Y1C, Y1D, and
Y1E (that is Module 1, Channel B, C, D and E).

The Address parameter of a Remote Variable function block may be changed at
any time so the block may be re-used to communicate with different
instruments and different parameters. It is not recommended that it is changed
when the function blocks' State parameter is 'Pending’, i.e. a request is
outstanding.

PC 3000 Function Blocks 3-183

Toshiba M

Data Formats

This section describes the different data encodings that can be selected for each
basic data type.

Integer

The Remote_Int function block provides access to a single 'Register' location
or, in the case of Input, Output and Relay Devices up to 16 'Device’ locations.
In the case of other 'Devices' it provides access to a single location. The
Remote_SW function block packs/unpacked the value from/to sixteen Digital
parameters.

String

The Remote_Str function block provides access to one or more
'Device/Register' locations or access to 'System or Diagnostic' information on
the slave device. When used with the 'Device/Register' commands or,
commands wanting to access single integer values, the data is entered as Hex
data by proceeding each character with the '$' symbol. When used with other
commands the data is entered as straight ASCII text (this is only used for the
"TS' command).

Errors

If there is an error in the Address string or if there is a communications error,
the Status parameter of the Remote Parameter block is set to NOGO and the
Error_No parameter will indicate the reason.

Note:- That the contents of the Address string is only validated
when initiating a remote read or write.

3-184 PC 3000 Function Blocks

Toshiba_M

Toshiba Commands Reference

The commands listed below include EX250/500 and EX2000 commands.
Where commands apply to one of the devices specifically these are identified
clearly.

Command Description

ER EX Error Status Read

*Reads the EX device error status.

TS Test

*Returns transmitted text as it was received at EX device.

ST EX Status Read
*Reads the EX Device status (RUN/HALT/ERROR).

DR Device/Register Read

*Reads contents of Device/Register.

DW Device/Register Write

*Writes contents of Device/Register.

BRt8 Program Block Read { EX250/500 Only)
*Reads Programs Block by Block.

BR¥§8 Program Information Block Read { EX2000 Only)

*Reads Program Information Block by Block.

Table 3-69 Toshiba EX250/500 and EX2000 Commands
+ EX250 and EX500 devices only.
¥ EX2000 device only.
§ EX250/500 Use of This Command.
§§ EX2000 Use of This Command.

PC 3000 Function Blocks 3-185

Toshiba M

Command Description

RB¥ Program Block Read
*Reads programs block by block.
BW+t§ Program Block Write

*Writes programs block by block.
BW¥§8 Program InformationBlock Write.

*Writes program information block by block.

WB¥ Program Block Write

*Writes programs block by block.
EC EX Control

*Controls operation mode of EX device.

IR Keep Area Top Read

*Reads the starting register for the top of the keep area.
Table 3-70 Toshiba EX250/500 and EX2000 Commands

+ EX250/500 Use of This Command.
11 EX2000 Use of This Command.
§ EX250/500 Use of This Command.
§§ EX2000 Use of This Command.

3-186 PC 3000 Function Blocks

Toshiba_M

Command Description
TR Diagnostic Table Read
*Reads user defined error information.
SRt System Parameter Read
*Reads the EX250/500 system information.
S1¥ System Parameter 1 Read
*Reads system information 1 from the EX2000 device.
S2¥ System Parameter 2 Read
*Reads system information 2 from the EX2000 device.
RT¥ Calendar/Clock Read
*Reads Calendar/Clock information.
WT¥ Calendar/Clock Write

*Writes Calendar/Clock information.

Table 3-71 Toshiba EX250/500 and EX2000 Commands

+ EX250 and EX500 devices only.
¥ EX2000 device only.

PC 3000 Function Blocks

3-187

Toshiba M

Toshiba Device/Register Reference

Register EX250 | EX250 (RAM EX500 |EX2000 (16K |EX2000 (32K
Extn) RAM) RAM)

XW Input Registers XWO0O0 - XWO00 - XW31 XWO0O0 - XW0000 - XW0000 -
Xw31 XWé3 XwW0499 XW0499

YW Output Registers YWO00 - |YWOO - YW31 |YWO00 - |YWO0000 - YWO0000 -
YW31 YWé63 YW0499 YW0499

RW Input Registers RWOO - RWOO - RW63 |RWOO - RW0000 - RW0000 -
RWé3 RWé3 RWO0999 RW0999

ZW Input Registers ZW00 - |ZWO0O0 - ZW31 |ZWO00 - |ZW0000 - ZW0000 -
ZW31 ZW31 ZW1999 ZW1999

D Data Registers DOO0O - D000 - D999 or|DOOO - D00000 - D0000O -
D511 or |0000 - 1535+ |D999 or |D08191 D16383
0000 - 0000 -
0511 1535t

T Timer Registers TOOO - TO0O - T127 |TOOO - TO00O0O - TO000O -
T127 T127 T00499 T00499

C Counter Registers C000 - C000 - C095 |CO000 - C00000 - C00000 -
C095 C095 C00499 C00499

X External Input Devices X000 - X000 - X15F X000 - X00000 - X00000 -
X15F X31F X0499F X0499F

Y External Output Devices | YOOO - Y000 - Y15F YOO0O0 - Y00000 - Y00000 -
Y15F Y31F YO499F YO0499F

R Auxiliary Relay Devices ROOO - ROOO - R63F ROOO - RO00QO - RO0O0OO -
R63F (Special coil: R63F RO999F (Special |RO999F (Special
(Special R600 - R63F) {Special | coil: RO9000 - |coil: RO9000 -
coil: R600 coil: R600 |RO999F) RO999F)
- R63F) - Ré63F)

Z Timer Registers Z000 - Z000 - Z31F Z000 - Z00000 - Z00000 -
Z31F Z31F Z0999F Z0999F

T. Timer Registers ¥ T.0000 - T.0000 -

T.0499 T.0499
C. Timer Registers ¥ C.0000 - C.0000 -
C.0499 C.0499

Table 3-72 Toshiba EX250/500 and EX2000 Device/Register Names and

Ranges

1 EX250 and EX500 devices only.
¥ EX2000 device only.

3-188

PC 3000 Function Blocks

Toshiba_M

Error Reporting

Driver Error Codes
These errors appear as the Error_No on the Toshiba_M block.

Error_No Error description

1 PORT ERROR NO ADDRESS

*There are less than two characters in the Port parameter of the function block.

5/6 PORT ERROR BAUD RATE NOT AVAILABLE

*The baud rate requested is not available on this serial port.

11 PORT ERROR ILLEGAL SLOT

*The slot number selected is not legal. The slot number is the first character of the
Port parameter and must be in the range '0' to '5'.

12 PORT ERROR ILLEGAL PORT

*The port number selected is not legal. The port number is the second character of
the Port parameter and must be in the range 'A' to 'C' for an LCM or 'A' to 'D' for an
ICM.

17 PORT ERROR PORT IN USE

*The selected Port is already in use for another driver.

Table 3-73 Toshiba M Error Codes

PC 3000 Function Blocks 3-189

Toshiba M

Remote Variable Error Codes

These errors appear as the Error_No on the remote variable block and the
Comms_Error on the Toshiba_M block.

Error_No

Error description

11

ADDRESS ERROR ILLEGAL SLOT

*The first character in the Address parameter is not in the valid range of '0' to '5'.

12

ADDRESS ERROR ILLEGAL PORT

*The second character in the Address parameter is not in the valid range of 'A' to 'C'
for a LCM port or 'A' to 'D' for an ICM port.

16

ADDRESS ERROR NO REMOTE PARAMETER SERVICE

*The port given in the Address parameter does not have a suitable master driver
allocated to it.

50

COMMS ERROR RX OVERRUN

*An overrun error was detected on a received character.

51

COMMS ERROR RX PARITY

*A parity error was detected on a received character.

52

COMMS ERROR RX PARITY & OVERRUN

*A parity and an overrun error were detected while receiving.

53

COMMS ERROR RX FRAMING

*A framing error was detected on a received character.

54

COMMS ERROR RX FRAMING & OVERRUN

*A framing and an overrun error were detected while receiving.

55

COMMS ERROR RX FRAMING & PARITY

*A framing and a parity error were detected while receiving.

56

COMMS ERROR RX FRAMING, OVERRUN & PARITY

*A framing, parity and overrun error were detected while receiving.

57-64

BREAK CONDITION CHANGED
*Break condition has been detected or cleared.
*Line may have been disconnected.

*Remote device Baud rate could be too slow.

Table 3-74 Remote Variable Error Codes

3-190

PC 3000 Function Blocks

Toshiba_M

Error_No Error description

80 STATION ADDRESS INVALID

*The station address specified in the remote variable address string is invalid.

81 NUMBER OF DEVICES INVALID

*An invalid number of Devices/Registers has been specified.

82 TOO MANY DEVICES SPECIFIED

*The number of devices specified is greater than the maximum limit of 32.

83 NUMBER OF DEVICES AND DATA MISMATCH

*There is not enough data in the remote string parameter value for the number of
Devices/Registers specified.

84 COMMS CHECKSUM ERROR
*A Checksum error has been detected in the response data received from the slave
device.

85 COMMS TIMEOUT ERROR

* A Timeout error has occurred after attempting the required number of retries with
no response from the slave device within the timeout period.

101 COMMAND ERROR

*The appropriate command is missing.

102 FORMAT ERROR

*Transmission format mismatch detfected.

103 CHECKSUM ERROR

*The request received by the slave device had a checksum error.

104+ ENDING CODE ERROR

*The packet ending code ')' and CR were not received by the slave device.
105¢ EXCESSIVE TEXT LENGTH

*Text sent exceeds 255 bytes.
106+ PROTECTION ERROR

*Write command received by slave whilst 'Write Protect' still on.

Table 3-74 Remote Variable Error Codes (continued)

T EX250 and EX500 devices only.

PC 3000 Function Blocks 3-191

Toshiba M

Error_No Error description
107+ CONVERSION ERROR
*Data from EX250/500 cannot be converted.
108+ TIME-OUT 1
*A time gap of 1 second or longer occurred during reception of data at the slave
device.
1091 TIME-OUT 2
*Request issued to the EX250/500 slave device was not accepted within 30 seconds.
110+ PARITY ERROR
*Parity error detected at the slave device.
111+ OVERRUN ERROR
*Overrun error detected at the slave device.
112+ FRAMING ERROR
*Framing error detected at the slave device.
131+ NO END INSTRUCTION
*No END instruction in slave program.
1321 ILLEGAL PAIR INSTRUCTION
*Error in slave program on initial RUN check.
133t PROGRAM FAILURE
*Program destroyed or program checksum error in slave.
1341 MEMORY FULL
*Unable to perform program write command, no more memory available.
135% ILLEGAL PAGE/CIRCUIT NUMBER
*Requested Page or Circuit does not exist.
136 MODE MISMATCH
*Invalid mode command received.
1371 PROM ERROR
* Attempt to write program after PROM was installed in slave.
138+ OPERAND ERROR

*Operand in program in slave does not match available 1/O device assignment.

Table 3-74 Remote Variable Error Codes (continued)

+ EX250 and EX500 devices only.

3-192

PC 3000 Function Blocks

Toshiba_M

Error_No Error description

139 ERRONEOUS REGISTER NUMBER/SIZE

*Undefined register specified or, register number out of range.

1401 |/O MISMATCH
*1/O programmed did not match available slave 1/O.
1411 I/O NO SYNC
*No response obtained from a specified 1/O module.
1421 ERRONEOUS TRANSMISSION
*Text reception processing error or, unidentified command.
143 TYPE MISMATCH
*Memory and I/O type recorded on storage device do not match those of the slave
device.
1441 PAGE FULL

*Page in program contains more than 255 instructions.

146¥ MEMORY PROTECT

*Slave device has its memory protected.

147¥% TRANSMISSION IS BUSY

*Command currently being executed from a local GP programmer device.

203¥ |/O BUS ERROR
*An |/O bus error was encountered when the RUN command was issued to the
slave.

234% I/0O NO SYNC ERROR

*No response from the 1/O device when the RUN command was issued.

235¥ I/O MISMATCH ERROR

*The installed I/O module does not correspond to the |/O allocation table.

Table 3-74 Remote Variable Error Codes (continued)

+ EX250 and EX500 devices only.
¥ EX2000 device only.

PC 3000 Function Blocks 3-193

Toshiba M

Error_No

Error description

237%

I/O OVERLAP ERROR

*Duplication of an I/O allocated register number is detected when the RUN
command is issued.

238¥

I/O NUMBER ERROR

*1/O allocated register number exceeds limits.

239

PROM WRITE ERROR
*An error is detected in the PROM write.

247¥%

NO END ERROR

*No END instruction is found within the main, sub or interrupt program.

242¥

PAIR INSTRUCTION ERROR

*An error is detected in a pair instruction for MCS/MCR, JCS,JCR when a RUN
command is issued.

243¥

OPERAND ERROR

*An error is detected in an operand instruction when a RUN command is issued.

244¥%

PROGRAM INVALID

*An error is detected in the program management table when a RUN command is
issued.

245¥%

JUMP ERROR

*An error is detected in the use of a JUMP instruction when a RUN command is
issued.

246¥

NO LABEL ERROR
*No LABEL is registered for the JUMP instruction.

247

NO SUB ERROR

*Subroutine program is not registered.

248¥

NO RETURN ERROR

*RETURN instruction in a subroutine

program is not registered.

Table 3-74 Remote Variable Error Codes (continued)

¥ EX2000 device only.

3-194

PC 3000 Function Blocks

Toshiba_M

Error_No Error description

249% SUBROUTINE NESTING

*An error is detected in nesting of a subroutine when a RUN command is issued.

250 STEP NUMBER ERROR
*An error in the Toshiba SFC step number is detected when a RUN command is
issued.

251 CONNECTOR STEP

*An error of sequence connection in Toshiba SFC page is detected when a RUN
command is issued.

252¥ TOSHIBA SFC SUBROUTINE ERROR
*No Toshiba SFC subroutine CALL instruction registered.
253¥ ILLEGAL USER INSTRUCTION

*An illegal command is detected in a user's program.

Table 3-74 Remote Variable Error Codes
¥ EX2000 device only.

PC 3000 Function Blocks 3-195

Toshiba M

Standard Communications Error Codes

The following codes apply to other communication protocol drivers. Additional
error codes will be used for all drivers when protocol specific error codes are

required.
Code Error Condition Slave Slave Master Remote
Driver | Variable | Drivert | Variable
0 OK * * % *
1 ADDRESS STRING TOO SHORT * * * *

*Port address to short
*Remote address too short
*Slave address to short

ILLEGAL DATABITS

ILLEGAL PARITY

ILLEGAL STOP BITS

RX BAUD RATE NOT AVAILABLE

TX BAUD RATE NOT AVAILABLE

RTS NOT AVAILABLE

0| N[O [AW

CTS NOT AVAILABLE

ILLEGAL SLOT
ethe first character in the Address parameter is
not in them valid range of '0' to '5'

12

ILLEGAL PORT

*the second character in the Address parameter
is not in the valid range for the module , for
example 'A' to 'C' for an LCM port or 'A' to 'D' for
an ICM port.

14

RX TX INCOMPATIBLE

16

NO REMOTE VARIABLE SERVICE

*Comms driver does not support Remote Vars.

17

PORT IN USE

18

TOO MANY SLAVE VARIABLES

*

19

TOO MANY DRIVER TYPES

*

Table 3-75 Standard Communications Error Codes

Note:- {These errors is also applicable to Raw
communications.driver function block.

These error codes may be offset to a higher set of values for some drivers in
order not to clash with standard error codes associated with the particular

protocol.

3-196

PC 3000 Function Blocks

Toshiba_M

Parameter Attributes

Name Type Cold Read Write Type Specific
Start Access Access Information
Port STRING 'OA' Oper Config
Baud ENUM 9600 Oper Config Enumerated | 300(0)
Values _600(1)
~200(2)
_400(3)
_4800(4)
_9600(5)
Time_Out TIME 1s Oper Super High Limit 24day
Low Limit 1sec
Max_Retries SINT 2 Oper Super High Limit 1000.
Low Limit 0
Enable_82X BOOL No Config Config Senses No(0)
Yes(1)
Reset_Stats BOOL No Oper Oper Senses No(0)
Yes(1)
Status BOOL NoGo Oper Block Senses NOGO(0)
Go(1)
Error_No SINT 0 Oper Block High Limit 255
Low Limit 0
Queuve_Space SINT 0 Oper Block High Limit 255
Low Limit 0
Comms_Error SINT 0 Oper Block High Limit 255
Low Limit 0

Table 3-76 Parameter Atftributes

PC 3000 Function Blocks

3-197

Toshiba M

Name Type Cold Read Write Type Specific
Start Access Access Information
Tot_Byte Tx DINT 0 Oper Block high Limit 999999999
Low Limit 0
Tot_Byte_Rx DINT 0 Oper Block High Limit 999999999
Low Limit 0
Tot_Pack_Tx DINT 0 Oper Block High Limit 999999999
Low Limit 0
Tot_pack_Rx DINT 0 Oper Block High Limit 999999999
Low Limit 0
Tot_Comms_Err DINT 0 Oper Block High limit 999999999
Low limit 0
Tot_CE_Err DINT 0 Oper Block High Limit 999999999
Low limit 0
Tot_EE_Err DINT 0 Oper Block High Limit 999999999
Low limit 0
Tot_Timeouts DINT 0 Oper Block High Limit 999999999
Low Limit 0
Tot_Retries DINT 0 Oper Block High Limit 999999999
Low Limit 0

Table 3-76 Parameter Attributes (continued)

3-198

PC 3000 Function Blocks

Euro_Panel

EURO_PANEL FUNCTION BLOCK

s

Euro Panel
strine — | port
ENUM ---|: Key Pressed ______ Key_Pressed - ENUM
ENUM ---'|: Change Page —————_- Change_Page - ENUM
BOOL “'|: Buzzer __ _ o ____. Buzzer - BOOL
BOOL —|: Wr_Protect Status BOOL
STRING —I: Format_ A Error No SINT
STRING —I: Format B Error_Str ENUM
STRING —I: Format_C Error_Pos SINT
striné. — | Format_ D

N

Figure: 3-46 Euro Panel Function Block Diagram

This block has now been replaced with the Europanel 2 function block. The pin
descriptions on that block apply equally to this one.

Functional Description

The Euro_Panel function block is designed to simplify producing displays on
the Eurotherm 2 line by 40 character panel. This function block is required
when programming the PC3000 to operate with the Euro_Panel display panel
and provides facilities to control the display of messages and to support user
interaction and data entry from the panel.

Before reading this description, you are advised to gain a general understanding
of the PC3000 communications system by reading the PC3000
Communications Overview.

The follow terminology has been used in this description:

OIFL Operator Interface Format Language used to define display
message and value formats for the Euro_Panel.
Page Term used in this document to refer to a particular format for the

complete 2 line by 40 character panel display.

PC 3000 Function Blocks 3-199

Euro_Panel

The Euro_Panel is a display panel with 2 lines by 40 characters, a numeric
keypad, up/down and scroll keys and can communicate with the PC3000 via
any RS422 communications port. Only one panel can be connected to a single
RS422 port.

2 lines of 40 characters displa,;k Up / down k(\e S

{,,,,,,,,,,,,,,,,,,,\,,,,,,,,,_,,,,,,,,,,,,,,,,,,,‘
©): (2 (8 (@
' [
' ’
D): N ‘
Scroll ; E@ @ @
Keys =8 >): :
o p— T pmm—— s ‘@
. C) C

Function keys Numerical keypad
Figure: 3-47 Panel Layout

The Euro_Panel communications driver function block provides PC3000
program support and handles all the low level functions such as data entry,
cursor movement, screen updates etc and sets up the serial link to use the
appropriate Baud rate, stop-bits etc. The parameters displayed on the panel are
Slave Variables on the PC3000, with the Euro_Panel function block,
functioning as the serial link master. A Slave Variable can be associated with
one or more Euro_Panel communications function blocks by using the 'EP'
protocol selector in the Slave Variable address.

Panel display messages can be formatted by setting up four string parameters to
the Euro_Panel function block. The formats are described using the Operator
Interface Formatting Language (OIFL). OIFL can reference specific Slave
Variable function blocks by a name which is supplied as part of the Slave
Variable address, for example, OIFL can be used to place the value of a Slave
Variable at a particular position in the panel display window. For more
information on Slave Variable function blocks refer to the "'PC3000
Communications Overview'.

Programming

When designing a system to use the Euro_Panel, the internal function block
parameters that are to be displayed or updated by the Euro_Panel should be
'wired' to a set of Slave Variable function blocks. For example, to display the
Output of a PID control loop, it is necessary to create a Slave_Real function
block which is 'wired' to the PID Output parameter. The Euro_Panel function
block refers to these slave variables via the names given the associated slave
addresses.

3-200 PC 3000 Function Blocks

Euro_Panel

In figure 3-13, three Slave Variables are associated with two Euro_Panel
communications driver function blocks which are assigned to ports '0C' and
'1B'. The port '0C' assigned function block has a format string that references
the Slave_Real Variable 'reall'. This results in the message 'Output is 100.0'
being displayed on the panel, where 100.0 is the current value of the Slave_Real
Variable. If the Slave_Real is wired to the Output of a PID function block, the
displayed value will be automatically updated by the Euro_Panel function block
every time it executes.

A second integer slave variable identified to the Euro_Panel block by the
address 'EPval_1', provides the value for a batch number which is displayed on
the panel attached to port B of the ICM.

'EPFlag’

Slave Int

LCM ICM

|0utput is 100.2 | | | BatchNo12 |

Figure: 3-48 Euro Panel Usage Example

PC 3000 Function Blocks 3-201

Euro_Panel

Slave Variables

The first two characters of the Slave Variable Address define the protocol with
which the slave variable is associated. In this case the first two characters must
be 'EP' to select the Euro_Panel; the rest of the address should be used to assign
a name to the Slave Variable which can be referenced within the OIFL format
language. This is called the OIFL parameter name and can be any set of alpha-
numeric characters including underscore '_' up to 12 characters in length.

Slave Variable Address examples :
"EPpv’
'EPset_point’
'EPs34_6_tt!

The slave variables also have a write protect parameter, which can be used to
enable and disable write permission on a particular variable such as on the state
of another parameter within the user program. This can be used for example, to
inhibit changes to certain parameters during certain phases of a process.

Euro_Panel Function Block

Each Euro_Panel function block is associated with a single communications
port, and hence a single Eurotherm Panel. It performs the conversion to
different formats for display, according to a set of format strings. It deals with
the protocol required to drive the panel, and performs the key handling for data
entry. It does not provide any facilities to change Baud rate or similar serial
link characteristics as these cannot be changed within the panel.

Use with Sequential Function Charts

In a simple application where the requirement is to display a fixed set of values
on the panel, it is only necessary to set-up the Euro_Panel format strings once,
for example, as cold-start values. However, with complex applications, it may
be necessary to change the displayed values using scroll lists and menus. This
can be achieved by changing the format strings within a Sequential Function
Chart (SFC). Four format strings are provided so that parts of a display region
on the panel may be changed independently. For example, it is possible for the
lower line to be part of the scroll list, while the top line always displays the
same information. In this case, the SFC only has to change the format string for
the lower line.

Note:- That the four format strings are always processed by the
Euro_Panel as if they form a single string. A User Program can
modify any of the four strings at any time.

Refer to the section on 'User Program Examples' for further
information.

3-202

PC 3000 Function Blocks

Euro_Panel

Function Block Atiributes

Y P 8 90

Class: ..ceveereeeeeeeeeeeee e COMMS

Default Task:cccceevrevivieriiiieeeinnee. Task_1

Short List: ceeeeeeeeeieieeeeeeeeeeeeeeeeeeeeeenen, Port Status Error_No
Memory Requirements:cccc........ 2356 Bytes
Execution Time:ccceeeveerriecerennens 1150 p Secs

PC 3000 Function Blocks 3-203

Euro_Panel2

EURO_PANEL2 FUNCTION BLOCK

1

Euro_ Panel2

STRING Port
ENUM '“'|: Key Pressed...... Key Pressed ENUM
ENUM '“'|: Change Page...... Change Page ENUM
BOOL "“I: BUZZEY &t it iiieiennenn Buzzer BOOL
BOOL _|: Wr_Protect Status BOOL
STRING _|: Format_A Error_No SINT
STRING _|: Format_B Error_Str ENUM
STRING _|: Format_C Error_Pos SINT
STRING —|: Format_D Mode ENUM
ENUM —I: Mode Select Disp State ENUM
ENUM ---I: LED 1
ENUM ---I: LED 2
svon =-{__| LED_3
oy —]__| LED 4
ENUM —I: LED_5
ENUM _|: LED 6
BOOL —|: Test
TIME —|: Screen_Save
STRING _|: ScrSave_Str
TIME ---|: Buzzer Dur
TIME ---I: Buzzer Err
TIME - Buzzer Key

Figure: 3-49 Euro_Panel2 Function Block Diagram
3-204 PC 3000 Function Blocks

Euro Panel2

Function Description

The Euro Panel 2 Function block is an enhanced version of the Euro Panel
function block which has been created to support the new features and
functionality available in the Version 2 Euro Panel.

This function block has been designed as a universal function block which can
drive both the version 1 and version 2 Euro Panels. It should be used in
preference to the Euro Panel function block for all new applications. It should
be noted that in all cases, the default input values have been chosen to mimic
version 1 Euro Panel behaviour.

Since this function block is an enhancement of the original Euro Panel function
block, only the new features will be described. Reference should be made to
the Euro Panel function block documentation for a full description of the
various modes of operation and for the definition of the Operator Interface
Formatting Language (OIFL).

Function Block Atiributes

Type: oo, 892

Class ..coeerrevvreeiiieeeeereeeee e COMMS

Default Task:cccevuevvvenireinnnnnes Task 2

Short List:ccevvuiiiiiiiieeieeennnnes Port, Status, Error No
Memory Requirements: 3084 Bytes

Parameter Descriptions

Mode_Select (MS)

The Mode_Select input controls the selection of the general mode of operation,
The possible values are:

PC 3000 Function Blocks 3-205

Euro_Panel2

Auto (O)

This mode allows the semi- automatic selection of the panel
type currently in use. (See later for further information).

EP (1)

This mode configures the function block to be compatible with
the Version 1 Euro Panel.

EP2_EP1 (2)

This mode configures the function block to drive the Version 2
Euro Panel in a Version 1 compatible mode.

EP2 (3)

This mode configures the function block to be fully compatible
with the Version 2 Euro Panel, and allows the enhanced
features to be fully utilised. This mode should be used for all
new applications.

Table 3-77 Mode Configurations

LED 1 (L1) to LED 6 (Lé)

These inputs activate the corresponding LEDs on the Version 2 Euro Panel. If
Mode Select is set to EP1 (1) these inputs have no effect. The possible values

arc:
Off{O) The LED is off
On (1) The LED is on
Flash (2) The LED will flash. The rate of Flash is determined by the
panel hardware and cannot be changed by the user.

Table 3-78 LED Values on Version 2 Euro Panel

The LED colours and default symbols (printed on the membrane), are shown in

Table 3-85
Input Colour Default Symbol
LED 1 Red (Bright) Alarm
LED 2 Red Battery Condition
LED 3 Green Stand-by
LED 4 Green Run
LED 5 Green Hold
LED 6 Red System Error

Table 3-79 LED Colours and Default Symbols

3-206

PC 3000 Function Blocks

Euro Panel2

Test (TST)

The Test input provides a simple way of checking that the panel is fully
operational. When Test is set to On (1), all the display characters, underlines
and LEDs will flash and the buzzer will sound continuously. When Test is
reset to Off(O), normal operation will resume. It should be noted that Test
does not work when the panel is in data entry mode.

Screen_Save (SCR)

A Screen Saver Function has been provided to allow the lifetime of the vacuum
fluorescent display to be prolonged.

If the Screen_Save time is set to T#Os (the default), the panel will operate
continuously as with the Euro Panel block. If it is set to a non-zero duration,
then the display will blank if there have been no page changes, key presses,
buzzer or test activity for this duration. The six status LEDs will continue to
operate.

A moving Eurotherm Logo appears on the otherwise blank display, to indicate
that the panel is still working. This can be changed or disabled using the
ScrSave_Str input (see below).

Once asleep, the display will be woken up by a page change, a key press or any
test or buzzer activity. In the case of a key press, the key press has no effect
other than to restore the display.

Screen_ Save is temporarily disabled when the panel is in the data entry mode.

ScrSave Str (SSS)

This string input allows the configurer to define the moving text which appears
during screen save. The text is limited in length to four characters. An empty
string (default) gives the standard Eurotherm Logo. For a completely blank
screen, the string should be set to one or more spaces. The input can be
changed at run-time, but the new string will only be picked up when the screen
saver is next started.

PC 3000 Function Blocks 3-207

Euro_Panel2

Buzzer Dur (BD)

This controls the duration of the 'beep' activated by the Buzzer input. The
default duration of 100ms matches the version 1 Euro Panel. Buzzer Dur has
no effect when the function block is in EP1 mode.

Buzzer Err (BE)

This controls the duration of the 'beep' activated by an error e.g. an invalid data
entry. The default duration of 100ms matches the version 1 Euro Panel
Buzzer_Err has no effect when the function block is in EP1 mode.

Buzzer Key (BK)

This controls the duration of the 'beep' activated by any key press (except key
presses during page change which are ignored). The default duration of Oms
(i.e. no beep) matches the Version 1 Euro Panel.

If the function block is in EP1 mode, any non-zero value will result in a 100 ms
beep for every key press.

Mode (M)

The Mode output indicates the actual active mode of operation.

Unknown (0) The mode has not yet been determined

EP1 (1) The function block has been configured to be compatible with
the Version 1 Euro Panel

EP2_EP1 (2) The function block has been configured to drive the Version 2
Euro Panel in a Version 1 compatible mode

EP2 (3) The function block has been configured ffor use with the
Version 2 Euro Panel

Table 3-80 Possible Values of Modes of Operation

3-208 PC 3000 Function Blocks

Euro Panel2

Disp-State (DS)
This output indicates the current state of the display.

Blank(0) The display is currently blanked e.g. during a page change
Display(1) The normal display mode (i.e. not data entry)

Entry(2) The operator has activated data entry mode

Sleep(3) The screen saver is in operation

Test (4) The panel is in test mode

Table 3-81 Possible Values of Display States

Some possible uses of this output include the time out of data entry to suspend
unnecessary processing when the panel is asleep, etc.

Basic Modes of Operation

The three basic modes of operation (EP1, EP2 and EP2-EP1) affect certain
aspects of functionality. These are now described in more detail.

Character Sets

Standard printable ASCII characters are handled normally in all three modes.
The special characters generated by characters outside the printable range are
different between Version 1 and Version 2 Euro Panel; there is a large degree
of overlap in the characters available but the codes are different. In EP1 and
EP2 modes the Version 1 and Version 2 character sets are used respectively. In
EP2_EP1 mode, the codes are mapped from the Version 1 set to the Version 2
set so as to give maximum compatibility. However, a few Version 1 characters
have become obsolete in Version 2 In these cases a near match has been used
where available, otherwise a filled block is used to highlight the problem.

PC 3000 Function Blocks 3-209

Euro_Panel2

Data Entry

In EP2_EP1 mode this works exactly as in Euro_Panel, but using red underlines
(i.e. flashing underline cursor, with 'live' data flashing and data being entered
non-flashing).

In EP2 mode exactly the same system is used, except that the cursor is green for
'live' data, red for entered data.

Mode Selection

Basic Mode Selection

The selection of the basic modes EP1, EP2_EP1 or EP2 is straightforwardly
achieved using Mode_Select. This would normally be set off-line in the
userware, then possibly altered online while the PC3000 is in the Reset or
Halted state.

Auto Mode

If Mode_Select is set to Auto then the basic mode is selected semi-
automatically.

Note that this features is only operational for LCM ports. On an ICM, it simply
results in the mode being set to EP2_EP1.

The remainder of this section refers to operation on an LCM port.

Because it involves characters temporarily being sent and/or received at
incorrect baud rate and parity, this feature cannot be regarded as fully
deterministic. Some specific limitations and recommendations are mentioned
below. Testing has shown that it works very well in practice.

In the first instance, Mode will be set to Unknown, since the hardware cannot
be determined until keys are pressed; in this mode nothing can be displayed.
Pressing some keys will eventually result in the mode being set to either EP1 or
EP2_EP1 as appropriate. Several key presses may be required, and one or two
particular keys may prove ineffective, e.g. '+/-' on Version 1 Euro Panel.

(None of these key presses has any effect beyond determining the mode). A
Change Page = Next Pge (3) will be automatically generated at this point, to
activate the display.

If the Mode_Select remains at Auto then if the panel hardware is changed over
to the other type, further key presses will eventually cause the mode to flip over
to match the new panel. Again, page change is automatically invoked, so that
display may commence immediately on the new panel. Note that this mode
change could possibly happen in error if the comms environment is very noisy;
to avoid this problem, the user program could include a Step which recognises

3-210

PC 3000 Function Blocks

Euro Panel2

the mode change from Unknown to EP1 or EP2_EP1 and then changes
Mode_Select to match Mode, in effect freezing the mode permanently from
then on. Note also that the Version 1 panel, if plugged into a port currently
displaying in a Version 2 mode, can very occasionally enter a lock-up state. In
this case the panel must be switched off and on again.

Mode change at runtime

A further feature is that the Mode Select may be used to force a mode change
'on the fly', i.e. at runtime, by setting it to a non-auto value which differs from
the current mode. The mode change then takes immediate effect, including an
automatic page change. (Note that this feature, like auto mode, is not available
on ICM).

OIFL enhancements

Several OIFL enhancements have been made in order to make use of the
enhanced functionality of the new panel. Some of these may be used in EP1
mode.

Positioning for Function Key legends

This feature is a new form of the '@' command, introduced to simplify the
positioning of legends for the function keys. The new commands are as
follows:

@f1 @f2 @f3

The position, default width and justification are automatically set up for the
next field, which should be the function key legend - usually a constant string or
a string variable. Subsequent fields will be positioned at subsequent function
key locations, until another '@' command is reached.

PC 3000 Function Blocks 3-211

Euro_Panel2

Example:

@f1, "Barrel", zone, "MORE " (zone is a STRING variable)

The actual string length should not exceed 13 characters for f1 or {3, or 12
characters for 2.

Underline Formats

In EP1 mode 'U' works exactly as before, giving blue underlines.

In the other modes we have:

U Generates red (upper) underlines

u Generates green (lower) underlines

In EP1 mode, 'u' is equivalent to 'U'".

Bar Chart Formats

The underscore characters may be used to implement bar charts. The new
format characters, which may be thought of as alternatives to the 'E'and 'S’
formats are:

B Bar chart using red (upper) underlines

b Bar charts using green (lower) underlines

This is for EP2 and EP2_EP1 modes. For EP1 mode, 'b' and 'B" are
equivalent, and use the blue underlines; the resolution is halved in this case,
because the underlines are not split into two segments as on the version 2 Euro
Panel

The justification character 'R' may be used to justify the bar to the right (i.e. it
grows towards the left). By default (or if L' or 'C' is used) it is justified to the
left.

3-212 PC 3000 Function Blocks

Euro Panel2

The slave value may be DINT or REAL. If min and max limits are specified
then they are used; if not, then they default to O and 100 respectively.

If the maximum is exceeded by the live value, then the entire bar will flash.
Similarly below minimum, except that in EP2_EP1 and EP2 modes only half-
underlines are flashed. These features may be (independently) disabled by
using the 'U' and/or 'u' qualifiers respectively.

The 'F' ("flip-sign') qualifier may be used to negate the parameter so that the bar
grows as the value decreases. This can sometimes be useful - see the 'error
chart' example below. Note that the limits are not negated.

Text may occupy the same position as bar charts, but 'U’, 'u' or 'W' qualifiers
should not be used with this text. Such an overlap will generally give error
131, except when a bar chart overlaps with underlines of the opposite colour;
this case is not detected as an error, but should be avoided, as the chart will
flicker where it overlaps.

A bar chart should not overlap with underlines of either colour it is not detected
as an error, but the chart will flicker.

A general example:
Format A = '0 50 100 50)
Format B := '@0,xxx:20LB, @20, yyy:20RB'
Format C = '@0: 1,yyy<=50:40B,@0,10<=yyy<=30:40bUu’

(and suppose xxx =70, yyy =20)

(In the case of the last bar, neither underflow or overflow will cause the flashing
behaviour described above.)

As a second example, note that a useful 'error chart' may be achieved as
follows:

'xxx:20bFRu,xxx:20Bu’

PC 3000 Function Blocks 3-213

Euro_Panel2

This grows to the right in red when xxx is positive (flashing if xxx is over 100)
and to the left in green when xxx is negative (flashing if xxx is below -100).

CR justification

By default, and as in Euro_Panel, centre justified fields tend towards the left if
the specified and actual widths are neither both even nor both odd. If the 'C'.
specifier is followed by 'R' then the tendency will be towards the right.
Previously this would have given error 127 ("More than one justification
specified"); 'R' followed by 'C' will still give this error.

Example:

"xx":5UC will give _xx

"xx":5UCR will give _ _xx

This feature is available in all modes.

Non-alphanumeric characters in enumerations

Enumeration strings are no longer restricted to alphanumeric. Any character
above $17 is permitted, except for the delimiters ',' and '}'.

Modified OIFL error codes

The following two tables list the differences between OIFL error codes in
Euro_Panel2 versus Euro_Panel. The first table give the Euro_Panel
meanings, the second the Euro_Panel2 meanings. In most cases the meaning
has simply been generalised. However, codes 129 and 131 have been merged
into 129, and 131 is now a new code, which is generated in EP2 and EP2_EP1
modes only.

3-214 PC 3000 Function Blocks

Euro Panel2

OIFL Error Codes (Euro_Panel)
122 Non alphanumeric in enum list
129 Scientific notation specified for non real param
130 Can't have scientific and engineering notation
131 Engineering notation specified for non real param
132 No more attribute space
138 No room for const string on display
Table 3-82 Euro_Panel Error Codes
OIFL Error Codes (Euro_Panel2)
122 Invalid character in enum list
129 Format is invalid for this parameter type
130 Conflicting formats specified
131 Overlapping display items
132 Too many display items
138 ltem does not fit within display area

Table 3-83 Euro_Panel 2 Error Codes

PC 3000 Function Blocks

3-215

Euro_Panel2

Parameter Attributes

Name

Type

Cold
Start

Read
Access

Write
Access

Type Specific Information

Port

STRING

|0 AI

Oper

Config

Key Pressed

ENUM

No_Key

Oper

Oper

Enumerated
Values

Zero(0)
One(1)
Two(2)
Three(3)
Four(4)
Five(5)
Six(6)
Seven(7)
Eight(8)
Nine(9)
Clkwse(10)
AClkwse(11)
Right(12)
Left(13)
F1(14)
F2(15)
F3(16)
Point (17)
Chg_Sgn(18)
Enter(19)
Down(20)
Up(21)
No_Key(22)

Change Page

ENUM

Ok

Oper

Oper

Enumerated
Values

Ok(0)
Pending(1)
Error(2)
Nxt_Pge(3)

Buzzer

BOOL

Off

Oper

Config

Senses

Off(0)
Beep(1)

Wr_Protect

BOOL

No

Oper

Super

Senses

No(0)
Yes(1)

Format_A

STRING

Oper

Config

Format_B

STRING

Oper

Config

Format C

STRING

Oper

Config

Format D

STRING

Oper

Config

Table 3-84

Euro_Panel2 Parameter Atiributes

3-216

PC 3000 Function Blocks

Euro Panel2

Name Type Cold Read Write Type Specific Information
Start Access Access
Status BOOL NoGo Oper Block Senses NoGo(0)
Go(1)
Error_No SINT 0 Oper Block High Limit 255
Low Limit 0
Error_sir ENUM No_Err Oper Block Enumerated No_Err(0)
Values Fmt A(T)
Fmt_B(2)
Fmt_C(3)
Fmt_D(4)
Error_Pos SINT 0 Oper Block High Limit 255
Low Limit 0
Mode_Select ENUM Auto(0) Oper Oper Enumerated Auto(0)
Values EP1(1)
EP2 EP1(2)
EP2(3)
LED 1 to LED 6 |ENUM Off (0) Oper Oper Enumerated Off(0)
Values On(1)
Flash(2)
Test BOOL Off (0) Oper Oper Senses Off(0)
On(1)
Screen_Save TIME Oms Oper Oper High Limit 20days
Low Limit Oms
SerSave_Str STRING " Oper Oper
BuzzerDur TIME 100ms Oper Oper High Limit 25540ms
Low Limit Oms
Buzzer Err TIME 100ms Oper Oper High Limit 25540ms
Low Limit Oms
Buzzer Key TIME Oms Oper Oper High Limit 2s540ms
Low Limit Oms
Mode ENUM Unknown |Oper Oper Enumerated Unknown(0)
(0) Values EP1(1)
EP2_EP1(2)
EP2(3)
Disp_State ENUM Blank(0) |Oper Oper Enumerated Blank(0)
Values Display(1)
Entry(2)
Sleep(3)
Test(4)

Table 3-84 Euro Panel2 Parameter Attributes (continued)

PC 3000 Function Blocks

3-217

Euro_Panel2

Character Codes

Hex Dec Description Char Hex Dec Description Char
18 24 invc 33 51 three 3
19 25 inv h 34 52 four 4
1A 26 | invi 1] 35 53 | five 5
1B 27 | invp P 36 54 | six 6
1C 28 invs 37 55 seven 7
1D 29 inva 38 56 | eight 8
1E 30 | inve E 39 57 nine 9
1F 31 not used 3A 58 colon
20 32 space u 3B 59 semi colon ;
21 33 exclamation ! 3C 60 less than <

mark
22 34 duoble quote " 3D 61 equals sign =
23 35 hash # 3E 62 greater than >
24 36 | dollar $ 3F 63 | query ?
25 37 percent % 40 64 commercial at @
26 38 ampersand & 41 65 capital a A
27 39 right quote ' 42 66 capital b B
28 40 left bracket (43 67 capital ¢ C
29 41 right bracket) 44 68 capital d D
2A 42 star * 45 69 capital e E
28 43 plus sign + 46 70 capital f F
2C 44 comma) 47 71 capital g G
2D 45 minus sign - 48 72 capital h H
2E 46 | full stop . 49 73 | capital i I
2F 47 slash / 4A 74 capital | J
30 48 | zero 0 4B 75 | capital k K
31 49 one 1 AC 76 capital | L
32 50 two 2 4D 77 capital m M

Table 3-85 Character Code for Euro_Panel2

3-218 PC 3000 Function Blocks

Euro Panel2

Hex Dec Description Char Hex Dec Description Char
AE 78 | capital n N 6B 107 | lower case k k
AF 79 capital o O 6C 108 | lower case | |
50 80 capital p P 6D 109 | lower case m m
51 81 capital q Q 6E 110 | lower case n n
52 82 capital r R 6F 111 | lower case o o
53 83 capital s S 70 112 | lower case p p
54 84 | copital t T 71 113 | lower case q q
55 85 capital u U 72 114 | lower case r r
56 86 capital v \V 73 115 lower case s s
57 87 capital w " 74 116 | lower case t t
58 88 capital x X 75 117 lower case u U
59 89 capital y Y 76 118 lower case v v
5A 90 capital z Z 77 119 lower case w W
58 91 | sq bracket [78 120 | lower case x X
5C 92 | back slash \ 79 121 lower case y y
5D 93 r sq bracket] 7A 122 lower case z z
SE 94 | up chevron ~ 7B 123 | |curly bracket {
SF 95 underscore _ 7C 124 | pipe |
60 96 | left quote : 7D 125 | rcurly bracket }
61 97 | lower case a 7E 126 | tilde ~
62 98 | lower case b 7F 127 | page symbol D
63 99 lower case ¢ c 80 128 | uper case c C

cidilla
64 100 | lower case d d 81 129 | lcu umlaut U
65 101 lower case e e 82 130 | c e acute é
66 102 lower case f 83 131 lca 4
circumflex
67 103 | lower case g 84 132 | lcaumblaut &
68 104 | lower case h h 85 133 | lcagrave b
69 105 lower case i i 86 134 | | cabol &
6A 106 | lower case i 87 135 | lcccidilla c

Table 3-85 Character Code for Euro_Panel2 (Continued)

PC 3000 Function Blocks

3-219

Euro_Panel2

Hex Dec Description Char Hex Dec Description Char
88 136 cce é Ab 166 lca a
circumflex
89 137 | c e umblaut é A7 167 lco o
8A 138 | lce grave P} A8 168 | inverted 2 3
8B 139 | lciumblaut i A9 169 | superscript + +
8C 140 | lcicircumflex 1 AA 170 | superscript - -
8D 141 | cigrave i AB 171 double down =
chevron
8E 142 | ucaumblaut A AC 172 | double -up AN
chevron
8F 143 | ucabol A AD 173 | inverted | .
90 144 | uceacute E AE 174 | much less than <
91 145 | Tcae oe AF 175 | much greater >>
than
92 146 | ucae A BO 176 | superscript O 0
93 147 | cleco é B1 177 | superscript 1 1
circumflex
94 148 | |c o umblaut o B2 178 | superscript 2 2
95 149 | lcograve o B3 179 | superscript 3 3
96 150 | |c v circumflex O B4 180 | superscript 4 4
97 151 | clcu grave U B5 181 superscript 5 5
98 152 | |cyumblaut y Bé6 182 | superscript 6 6
99 153 | ucoumblaut 0) B7 183 | superscript 7 7
9A 154 | ucuumblaut U B8 184 | superscript 8 8
98 155 | cent ¢ B9 185 | superscript 9 9
9C 156 | pound sign e BA 186 | subscript O 0
9D 157 | yensign ¥ BB 187 | subscript 1 1
9E 158 | | h zoneend Ie BC 188 | subscript 2 2
9F 159 | mid zone sign (— BD 189 | subscript 3 3
AO 160 | c a acute 4 BE 190 | subscript 4 4
Al 161 | ciacute i BF 191 subscript 5 5
A2 162 | c o acute é Co 192 subscript 6 6
A3 163 | lcuacute U Ci 193 | subscript 7 7
Ad 164 |l cn - tilde A C2 194 subscript 8 8

Table 3-85 Character Code for Euro_Panel2 (Continued)

3-220 PC 3000 Function Blocks

Euro Panel2

Hex Dec Description Char Hex Dec Description Char
A5 165 | ucn -tilde N C3 195 | subscript 9 9
C4 196 | inv0 m DE 222 | up arrow T
C5 197 | inv 1 DF 223 | down arrow \
Cé 198 inv 2 E EO 224 | alpha o
Cc7 199 | inv3 El 225 | beta
C8 200 inv 4 E2 226 | cap gamma r
C9 201 | inv 5 5 E3 227 | pi T
CA 202 | inv 6 E E4 228 | ucsigma)
CB 203 | inv 7 E5 229 | lc sigma c
cC 204 | inv 8 B E6 230 | mu p
CD 205 | inv 9 g E7 231 | tau T
CE 206 | row 2 - E8 232 | phi ¢
CF 207 | row 3 _ E9 233 | theta 0
DO 208 | row 4 - EA 234 | omega Q
D1 209 | row 5 - EB 235 | lc delta 5
D2 210 | row 6 - EC 236 | infinity oo
D3 211 | row 7 - ED 237 | psi v
D4 212 | row 8 - EE 238 | uc epsilion E
D5 213 | col 2 EF 239 | uceta H
Dé 214 | col 3 FO 240 | equivalence =

sign
D7 215 | col 4 F1 241 plus/minus x
D8 216 | col 5 | F2 242 | greater than or 2
equals
D9 217 | intgrdl I F3 243 | less than or <
equals
DA 218 | bell symbol A F4 244 | inv- .
DB 219 | filled block . F5 245 | inv +
DC 220 | left arrow &~ Fé 246 | divide sign +
DD 221 right arrow - F7 247 | approx equals =
Table 3-85 Character Code for Euro_Panel2 (Continued)
PC 3000 Function Blocks 3-221

Euro_Panel2

Hex Dec Description Char Hex Dec Description Char
F8 248 | degree sign ° FC 252 lc eta n
F9 249 | large bullet 1 FD 253 | superscript 2 2
FA 250 | small bullet 1 FE 254 | small block |
FB 251 sq root sign 4 FF 255 | not used
Table 3-85 Character Code for Euro_Panel2
3-222 PC 3000 Function Blocks

AllenB M

ALLENB_M FUNCTION BLOCK

/

AllenB M
STRING —I: Port Status BOOL
enow — | Baud Error_No DINT
BOOL —I: Parity HQueue_Spc DINT
DINT —|: DL_NAKRetry NQueue_Spc DINT
pint —| | DL_ENQRetry DL_ChSmErr DINT
riME —] | DL_TimeOut DL_NoTmouts DINT
DINT —|_ AL, Retries DL_NoRetry DINT
TIME _|: AI, TimeOut AL _TotMsgTx DINT
DINT _|: AL_MsgQueue AL _TotMsgRx DINT
Boor — | Wrt_Protect Al,_TotMsgF1l DINT
AL, TotMsgOK DINT
AT, TotMsgTO DINT
Al,_TotMsgRT DINT
AlL_TotOutMsg DINT
Comms_Error DINT
BOOL —I: Reset_Stats Reset_Status BOOL
pINT —]] Node No Node_No DINT

N

Figure 3-50 AllenB_M Function Block Diagram

PC 3000 Function Blocks 3-223

AllenB_M

Functional Description

Note: This block runs on the LCM only - it cannot be assigned
to an ICM port

Allen-Bradley Communications Protocol & Command Set Compliance

The PC3000 communications function block implementation of the Allen-
Bradley Data Highway/Data Highway PlusT™M/DH-485 Communication
Protocol has been designed as a Master only driver with support for the full-
duplex data link layer protocols.

Application layer message protocol support is a subset of three (3) command
sets. The command sets supported and the functions of that command set are
listed in the next sections.

Basic Command Set

The basic command set allows the PC3000 to communicate with PLC nodes
that have been enabled to support the Allen-Bradley non-privileged commands
listed below.

Non-Privileged CMD FNC
Unprotected read 01 N/A
Unprotected write 08 N/A

No Privileged commands are supported.

Unprotected reads and writes in a PLC allow access to the output registers of a
PLC. For a PLC-5, these are the 'O' (or Output) word registers.

These commands are designed to support communications to the Output
registers of any PLC-2, PLC-3, PLC-4, PLC-5, or SLC-500 which is equipped
the proper Allen-Bradley communication hardware.

Reference:

ALLEN-BRADLEY Data Highway/Data Highway Plus™/DH-485
Communication Protocol and Command Set, Reference Manual,

Publication 1770-6.5.16 November 1991.

3-224 PC 3000 Function Blocks

AllenB M

PLC-5 Family Command Set

The PLC-5 family command set functions supported enable integers and floats
to be read from and written to a PLC-5.

Message CMD FNC
Typed read (floats) OF 68
Typed write (floats) OF 67
Word Range read OF 01
(integers)
Word Range write OF 00
(integers)

The Typed and Word Range commands allow read/write data of the float (F)
and integer (N) data files respectively.

The PC3000 communications function block supports logical ASCII addressing
in the PLC-5 System Address message packet field.

It does not support logical binary addressing.

It does not support embedded responses. Embedded responses are response
symbols transmitted within the message packet.

PC3000 to Allen-Bradley Comms Hardware Setup & Wiring

Communications between the PC3000 and an Allen-Bradley device is
accomplished through asynchronous RS-422 serial data transfer. On the
PC3000, this is a serial port in an PC3000 ICM (Intelligent Communications
Module) or LCM (Local Control Module).

On the Allen-Bradley network, an asynchronous serial interface port is required.
Information on the required Allen-Bradley communications hardware is given
for PLC-5s (using Data Highway PlusT™ network) and SLC-500s (using the
DH-485™ network). For more in-depth information on Allen-Bradley PLC
asynchronous interface modules, contact an Allen-Bradley sales office or
distributor.

Data Highway Plus™ network: Communications to the Allen-Bradley Data
Highway Plus™ can be made through either of the following devices:

1. Allen-Bradley 1785-KE interface module (mounts in PLC-5
rack for RS-232 communications)
2. Allen-Bradley 1780-KF2 interface module (stand alone

converter for RS-232 or RS-422 communications)

PC 3000 Function Blocks 3-225

AllenB_M

Allen-Bradley 1770-KF2 or 1785-KE settings:

parity as setup by PC3000 software config tools
no embedded responses

no duplicate message detection

no handshaking

full-duplex

BCC error checking

baud as setup by PC3000 software config tools

RS422 Allen Bradley communications:

PC3000 Allen-Bradley
LCM/ICM 1770-KF2
pin pin
3 Red ' C— Rx- 16
4 Black Tx+ -—------ Rx+ 18
5 Green Rx- --——-- Tx- 14
6 Blue Rx+ -------- Tx+ 25

RS232 Allen Bradley communications:

PC3000 Cable EUROTHERM 261 | Cable AB 1780-KF2
LCM/ICM (RS-422 to RS-232 or 1785-KE
converter)
pin pin pin pin
3 Red Tx- ---- Rx- | 16 2 TX ------ Rx
4 Black Tx+ ---—- Rx+ | 3 3 Rx ------ Tx 2
5 Green |Rx--—-- Tx- |13 7 Com ----- Com 7
6 Blue Rx+ ---- Tx+ | 12
RS-422 RS-232
3-226 PC 3000 Function Blocks

AllenB M

Note on accessing SLC-500 information from the Data Highway Plus:

Use of an Allen-Bradley 1785-KAS module allows routing of
information between the PLC-5's Data Highway Plus network
and the SLC-500's DH-485 network. However, only a PLC-5
can access information through this 'router'.

A 1785-KE or 1780-KF2 module (the port to which the PC3000
is connected) cannot use this 'router’. Thus, the PC3000 cannot
directly access information from a SLC-500 PLC. A way for a
PC3000 to access information in the SLC-500 is to allow a
PLC-5 to act as an data transfer agent.

The PC3000 can read/write data from/to designated PLC-5
registers. Then, the SLC-500 can write/read the same data
to/from the same PLC-5.

Acceptance testing has only been performed on a PLC-5 Data Highway
Plus™ petwork node.

PC3000 Software Configuration Overview

Configuration of the PC3000 to Allen-Bradley device driver requires the
configuration of one 'COMMS' class function block and one or more
'REMOTE_VARS' class function blocks with the PC3000 configuration tools.

Allen-Bradley Device Comms Setup:

To setup the Allen-Bradley device driver:

&

%

%

Choose a COMMS class function blocks.
Select an AllenB_M type function block.

Create (or edit) an AllenB_M type function block. The parameters
'Port', 'Baud', 'Parity’ are typically the only parameters which may
require modification from the default settings.

Data Values Setup:

To setup access to a PLC value:

*

*

Select a REMOTE_ VAR class function block.

Select either Rmt_Real (floating point) or Rmt_Dint(integer)
or Rmt_SW (integer).

A Rmt_Real would be selected for accessing an Allen-Bradley
floating point value.

PC 3000 Function Blocks 3-227

AllenB_M

A Rmt_Dint would be selected for accessing and Allen-Bradley
integer. Rmt_Real8, Rmt_Real64, Rmt_Dint8, or
Rmt_Dint64 are used if block reads are required.

A Rmt_SW would be selected for accessing an Allen Bradley
integer as bits.

Rmt_Real8 & Rmt_dint8 support blocks up to 8 elements.
Rmt_Dint64 supports blocks up to 64 elements.
Rmt_Real64 supports blocks up to 50 elements.

* Enter the parameters such as 'Address’, data triggering 'Mode',
and data 'Refresh’ rate.

* Accessing this function block will display the PLC value.

Remote Parameter Function Block Detail

The AllenB_M driver supports the remote parameter Rmt_Dint (integer) and
Rmt_Real (float) function block types for single parameter reads and writes.
Rmt_Dint8, Rmt_Real8, Rmt_Dint64, and Rmt_Real64 remote function
block types are supported for block reads.

Note: Rmt_SW may be used as it is a dint displayed in Bits.

The following are the setup parameters required to configure a read or write
from/to an Allen-Bradley device:

Address

Contains a field to enter a series of characters which designate access to a
remote device (in this case the Allen-Bradley PLC). The format of the field is as
follows, all fields must be filled (except for size which defaults to one):

Port Destination | Priority Size Identifier Address

If errors are made in configuration of the address, and error code number will
be presented in the Error_No parameter of the remote parameter function
block. The meaning of the error code number is shown in the Configuration
and Communication Errors page 3-354.

Note: The Address is only validated while actually communicating a read or
write request to the Allen-Bradley device.

3-228

PC 3000 Function Blocks

AllenB M

Port
Is two characters which designate to which PC3000 physical port to attach.
This Function Block will only run on the LCM. Ports OA, 0B or OC.

Destination

Is the Allen-Bradley network Node Number which will be accessed by this
function block. Itis a Octal numerical value between 0 and 376 (254 decimal).
Leading zeros are permitted, but not required.

Examples: '5' specifies PLC at octal address 5
'034' specifies PLC at octal address 34

Priority
Can be set to normal ('N' or 'n") or high ('"H' or 'h"). Assignment as high priority
has two effects. First, within the PC3000, these parameters are moved to the
front of the queue. Second, the Allen-Bradley network designates these as high
priority. note: Excessive use of high priority will nullify its effectiveness, and
inhibit the transmission of normal priority requests.

Examples: 'N' specifies normal priority

'h' specifies high priority

Size (optional):

Is an optional parameter to be supplied on read commands. This specifies the
size of a block read. If no size is specified, a single parameter read is
performed. Block reads can only be performed with remote function block
types Rmt_Dint8 (8 value integer), Rmt_Real8 (8 value floating point) blocks,
Rmt_Dint64 (64 value integer), and Rmt_Dint64 (50 element integer). The
form of the size parameter a number (1 to 64) which specifies the size. Leading
zeros are allowed, but not required.

Examples: T
|48|

PC 3000 Function Blocks 3-229

AllenB_M

Identifier

Is a single character that identifies the type of command being issued. It may be
one of the following:

U (u) Unprotected Word (read/write of PLC output value)
MUST be a Rmt_Dint type remote function block.
T (t) Typed (read/write of float(F) files)
MUST be a Rmt_Real type remote function.
W (w) Word Range (read/write of integer(N) files)
MUST be a Rmt_Dint type remote function block.

The remote parameter function block determines whether a block is designated
as read or write.

Examples: U’

Address:

Contains the data address in the PLC which is to be accessed. For a 'U’
Identifier, the address field always contains a four character address. For a "T'
or 'W' Identifier, the address contains the file number, ":', element number.

Examples: U Identifier: '0024' Output word 24
'0002' Output word 2
W Identifier: 'N10:23' Int file 10, element 23
'N14:2' Int file 14, element 2
T Identifier: 'F13:3' Flt file 13, element 3

'F16:32' Flt file 16, element 32

3-230 PC 3000 Function Blocks

AllenB M

Function Block Atiributes

TYPe: e, 8E7

Class: .cccovveeeiicreeeeecceree e COMMS
DefaultTask:cccooevvvuvrennnnnene. Task 2

Short List: c..eveeeeeiineeeeiieeeinnns Port, Baud, Parity

Parameter Descriptions
Driver Configuration Parameters

Port

Is the two character address of the PC3000 LCM port on which the Allen-
Bradley protocol is to be run.

example: '0C' would be port C on the LCM.

This Function Block cannot be assigned to an ICM.

Baud

Gives a choice of seven rates from 300 baud to 19200 as shown:

300 4800
600 9600
1200 19200
2400

Default: 9600

Parity
Allows selection of communication parity as shown:

None

Even

Default: None

PC 3000 Function Blocks 3-231

AllenB_M

DL_NAKRetry

Sets the number of retries that will be make in transmitting a message at the
Data Link Layer. Default: 3

DL_ENQRetry

Sets the number of Enquiries that will be make after a message has been
transmitted at the Data Link Layer, but when no response has been received
before the specifies timeout period of parameter DL._ TimeQOut. The enquiry
will request the last response from the slave device. If no response is received
within the timeout period; then, enquiries will be made up to the retry limit.
Default: 3

DL TimeOut

Sets the Data Link Layer Timeout between transmitting a message and
receiving the response. After this timeout has elapsed, an enquiry (ENQ) will
be transmitted to determine the last response from the slave. The driver then
will respond according to the last response. Default: 1 second

AL_Retries

Sets the number of retries that will be made in transmitting a message packet at
the Application Layer. A retry will be made up to the specified limit when a
NAK is received from the Data Link Layer. If the number of retries is
exceeded, then an error will be reported on the Comms_Error output.

Default: 3

AL_TimeOut

Sets the Application Layer timeout between transmitting a message packet and
receiving the corresponding response packet. This timeout MUST be longer
than the Maximum length of time that could be spent in the Data Link Layer.
After the timeout has elapsed, a retry will be made (up to the specified limit) to
transmit to the message packet again. Default: 10 seconds

AL_MsgQueue

Sets the number of outstanding command message packets allowed at the
Application Layer. The recommended number of outstanding message is
between 1 and 3. Values above this recommended limit may result in message
transmission and reception errors. The maximum limit for the number of
outstanding messages is 10. Default: 3

Wrt_Protect

Is not currently used, but has been provided for later Slave function block
enhancements.

3-232 PC 3000 Function Blocks

AllenB M

Node No

Specifies the Allen-Bradley Data Highway Octal node address number of the
network interface module (such as the 1770-KF2 or 1785-KE for a Data
Highway/Data Highway Plus™ network). This parameter will automatically
configure itself to the address of the connected interface module. Default: O

Driver Status Parameters

The driver status is indicated by six status output parameters in the AllenB_M
function block.

Status

Is a boolean (OK or NoGo) indication of the state of the communications to the
Allen-Bradley device. If communications are good, 'OK' will be displayed. If
error, 'NoGo' will be displayed. If the Status is NoGo, the Error_No parameter
will indicate the reason for the problem.

Error No

Indicates the reason for error in communications to the Allen-Bradley device. If
Status is 'OK', Error_No will be 0. If error exists(Status is NoGo), a number
will be displayed indicating the cause. These cause numbers are listed in
section 9.

Hqueue Spc

Indicates the amount of space left in the queue for High Priority remote
parameter operations. If Hqueue_Spc reaches zero, the serial communications
bandwidth is not sufficient to cope with the number of High Priority remote
parameters requests being made. In this case, High Priority remote parameter
request will be added to the Normal Priority queue. If this situation arises, the
number of High Priority remote parameter requests should be reduced through a
PC3000 configuration change.

Nqueue Spc

Indicates the amount of space left in the queue for Normal Priority remote
parameter operations. If Nqueue_Spc reaches zero, the serial communications
bandwidth is not sufficient to cope with the number of remote parameter request
being made, and data will be lost. If this situation arises, the parameter polling
rates should be reduced through a PC3000 configuration change.

AL TotOutMsg

Indicates the total number of outstanding messages that are currently being
actioned by the Allen-Bradley driver block. When a message is actioned by the
Allen-Bradley driver, it is removed from the corresponding Remote Parameter
queue and placed on the Outstanding Message queue.

PC 3000 Function Blocks 3-233

AllenB_M

Comms_Error

Indicates the status of the last transaction executed by the Allen-Bradley driver.
If there was some error detected, this will be reflected here. If many
transactions are occurring, then any error detected and reported will remain here
only until the next transaction is completed.

Driver Statistical Parameters

Driver statistical parameters keep running totals errors, timeouts, transmissions,
and receptions associated with the PC3000 to Allen-Bradley device
communications. These statistics are indicated in ten output parameters.

Reset Stats

Resets all statistical information outputs. This is done by setting this to "'YES'.
The parameter automatically changes to 'NO' once the statistical outputs have
been reset.

DL_ChksmErr

Indicates the total number of checksum errors that have been encountered
during message transmission at the Data Link Layer.

DL _NoTmOuts

Indicates the total number of timeouts that have been encountered during
message transmission at the Data Link Layer.

DL Retry

Indicates the total number of retries that have been made due to errors or
timeouts in message transmission at the Data Link Layer.

AL_TotMsgTx

Indicates the total number of message packets that have been transmitted at the
Application Layer.

AL_TotMsgRx

Indicates the total number of message packets that have been received at the
Application Layer.

AL_TotMsgFl

Indicates the total number of message packet transmission failures that have
occurred at the Application Layer.

3-234 PC 3000 Function Blocks

AllenB M

AL_TotMsgOK

Indicates the total number of message packet transmissions that have been sent
successfully by the Application Layer.

AL TotMsgTO

Indicates the total number of timeouts encountered in transmitting message
packets from the Application Layer.

AL_TotMsgRT

Indicates the total number of retries that have been made due to errors or
timeouts in message packet transmission at the Application Layer.

PC 3000 Function Blocks 3-235

AllenB_M

Configuration and Communication Errors

Errors in the PC3000 configuration or communications to the Allen-Bradley
PLC are indicated in the Status parameter of the remote function block. The
Error_No parameter in the remote function block gives a number which
indicates the cause. The following is a list of all possible errors:

—_

LCM/ICM ERROR:

NO ADDRESS

2 LCM/ICM ERROR: ILLEGAL DATA BITS

3 LCM/ICM ERROR: ILLEGAL PARITY

4 LCM/ICM ERROR: ILLEGAL STOP BITS

5 LCM/ICM ERROR: RX BAUD RATE NOT AVAILABLE

6 LCM/ICM ERROR: TX BAUD RATE NOT AVAILABLE

7 LCM/ICM ERROR: RTS NOT AVAILABLE

8 LCM/ICM ERROR: CTS NOT AVAILABLE

9 LCM/ICM ERROR: DUPLEX MODE NOT AVAILABLE

10 LCM/ICM ERROR: TX DISABLE NOT AVAILABLE

11 LCM/ICM ERROR: ADDRESS ERROR ILLEGAL SLOT
The first parameter in the Address parameter is not in the valid range of '0' to '5'.

12 LCM/ICM ERROR: ADDRESS ERROR ILLEGAL PORT
The second character in the Address parameter is not in the valid range of 'A' to 'C'
for an LCM port or 'A' to 'D' for an ICM port.

13 LCM/ICM ERROR: BREAK ON

14 LCM/ICM ERROR: RX TX INCOMPATIBLE

15 LCM/ICM ERROR: ILLEGAL INITIALIZATION TYPE

16 LCM/ICM ERROR: ADDRESS ERROR NO REMOTE PARAMETER SERVICE
The port given in the Address parameter does not have a suitable master driver
allocated to it.

17 LCM/ICM ERROR: PORT IN USE

18 LCM/ICM ERROR: TOO MANY SLAVE PARAMETERS

19 LCM/ICM ERROR: TOO MANY DRIVER TYPES

20 LCM/ICM ERROR: TOO MANY REMOTE PARAMETERS

21 LCM/ICM ERROR: INTER BOARD

22 LCM/ICM ERROR: UNSUPPORTED FUNCTION BLOCK TYPE

3-236

PC 3000 Function Blocks

AllenB M

23 LCM/ICM ERROR: ALREADY TRANSFERRED
24 LCM/ICM ERROR: WRITE PROTECTED

25 LCM/ICM ERROR: BOARD FAILURE

26 LCM/ICM ERROR: MEMORY

27 LCM/ICM ERROR: ABORT DUE TO HALT
70 DLL CHECKSUM ERROR

There has been a checksum error detected at the Data Link Layer reception.

75 DESTINATION NODE INVALID

The Destination Node entered in the remote parameter address in incorrect.

76 COMMAND PRIORITY INVALID
The command priority character entered in the remote parameter address is
incorrect.

77 READ BLOCK SPECIFIED IS TOO LARGE

The multi-element remote block specified was larger than allowed.

78 BLOCK READ RESPONSE FOR SINGLE READ REQUEST
The Allen Bradley device returned a multi-valued response for a single-valued
request.

79 INVALID IDENTIFIER SPECIFIED

An invalid identifier has been specified in the remote parameter address.

81 INVALID 'U' ADDRESS

An invalid address has been specified for an Unprotected Read/Write command in
the remote parameter address.

84 DATA VALUE TOO BIG OR SMALL FOR FLOAT
The value of data is greater than 3.4E38 or less than -3.4E38.
87 APL TIMEOUT WHILE SENDING MESSAGE

A timeout at the application layer occurred while sending a command message.

91 APL FAILED TO GET RESPONSE

No response was received at the application layer to a command message sent.

92 INVALID WRITE ADDRESS
The PLC-5 Logical ASCII address specified was invalid.

93 DATA VALUE TO LARGE FOR INTEGER

The integer data value specified was larger than allowed.

94 INVALID REMOTE FUNCTION BLOCK TYPE

The remote function block type is invalid for this type of command.

PC 3000 Function Blocks 3-237

AllenB_M

95 FLOAT VALUE TOO BIG OR SMALL
The floating point value is greater than 3.4E38 or -3.4E38.
102 DLL SUSPECT DATA DELIVERY

Cannot guarantee delivery at the DLL.

103 DUPLICATE TOKEN
Duplicate token holder detected.

104 LOCAL PORT DISCONNECTED

No communications is available

105 APL TIMEOUT WAITING FOR RESPONSE
Application layer timed out waiting for a response.

106 DUPLICATE NODE DETECTED

107 STATION IS OFF-LINE

108 LOCAL HARDWARE FAULT

116 ILLEGAL COMMAND OR FORMAT

117 HOST CANNOT COMMUNICATE

Host has a problem and will not communicate.

118 REMOTE NODE HOST NOT OPERATING

Remote node host is missing, disconnected, or shutdown.

119 REMOTE HARDWARE FAULT

Host could not complete function due to hardware fault.

120 ADDRESSING PROBLEM

Addressing problem or memory protect rungs.

121 INVALID FUNCTION

Function disallowed due to command protection selection.

122 PROCESSOR IN PROGRAM MODE

123 MISSING FILE OR ZONE PROBLEM

Compatibility mode file is missing or communication zone problem.

124 REMOTE NODE BUFFER FULL

Remote node cannot buffer command.

126 REMOTE NODE PROBLEM

Remote node problem due to download.

127 CANNOT EXECUTE COMMAND

Cannot execute command due to active IPBs.

128 LCM/ICM ERROR: SYSTEM ERROR

3-238 PC 3000 Function Blocks

AllenB M

131 ILLEGAL VALUE IN FIELD

A field contains an illegal value.

132 ADDRESS TOO SMALL

Less levels specified in address than the minimum for any address.

133 ADDRESS TOO LARGE

More levels specified in address than system supports.

134 SYMBOL DOES NOT EXIST
Symbol not found.

135 INVALID SYMBOL

Symbol is of improper format.

136 INVALID ADDRESS

Address does not point to something useable.

137 INVALID FILE SIZE

File is the wrong size.

138 COMMAND CANNOT BE COMPLETED

Cannot complete request. Situation has changes since the start of the command.
139 DATA OR FILE TOO LARGE
140 TRANSACTION SIZE AND ADDRESS TOO LARGE

Transaction size plus word address is too long.

141 ACCESS DENIED

Access denied, improper privilege.

142 CONDITION CANNOT BE GENERATED

Condition cannot be generated - resource not available.

143 CONDITION EXISTS

Condition already exists - resource is already available.

144 COMMAND CANNOT BE EXECUTED

145 HISTOGRAM OVERFLOW

146 NO ACCESS

147 ILLEGAL DATA TYPE

148 INVALID PARAMETER OR DATA

149 ADDRESS REFERENCE EXISTS TO DELETED AREA
150 COMMAND EXECUTION FAILURE

Command execution failure for unknown reason. Possible PLC-3 histogram
overflow.

PC 3000 Function Blocks 3-239

AllenB_M

151 DATA CONVERSION ERROR

152 SCANNER CANNOT COMMUNICATE

Scanner is not able to communicate with 1771 rack adapter.

153 ADAPTER CANNOT COMMUNICATE

Adapter cannot communicate with module.

154 INVALID RESPONSE FROM 1771 MODULE
155 DUPLICATE LABEL
156 FILE ALREADY OPEN

File is open. Another node owns it.

157 PROGRAM OWNED BY ANOTHER NODE

Another node is the program owner.

254 LCM/ICM ERROR: QUEUE FULL
255 LCM/ICM ERROR: REMOTE PARAMETER DESCRIPTOR NOT READY TO BE
RETURNED

3-240 PC 3000 Function Blocks

Appendix A

APPENDIX A

ASCII

AWG
Baud

Block Check
Character(s),
BCC

Channel
Identity

Control

characters

EI Bisync

ESP
Full Duplex

GID

Half Duplex

GLOSSARY OF TERMS

American Standard Code for Information Interchange - the
character set used within the PC3000 system. (see
Appendix D for full ASCII character set)

American Wire Gauge

The number of line signal state changes per second for
sending serial information.

One or more characters that contain a value that is created
by using an algorithm such as summation or longitudinal
parity, which is applied to bytes within a communications
message. The BCC is usually added to the end of a
transmission message. It can then be used by the receiving
device to cross-check integrity of the message by re-running
the algorithm applied to the same bytes within the message.

Within some protocols it is possible to address a sub-set
of parameters using a channel identity. With El Bisync a
channel identity (CHID) as a single printable character is
sometimes required.

Certain characters within the ASCII character set, that are
used to frame messages or to signal control information
between devices. The particular control characters used will
depend on the communications protocol used. Examples are
:<escape> 1BH.

A serial protocol adopted by the Eurotherm International
group of companies for use with a wide variety of
instruments. For a detailed definition of the standard refer to
'Eurotherm International Bisync Handbook EI HP022047C'
and 'EI Bisync Communications Protocol Extensions EI
HP024113'.

Eurotherm Supervisory System which runs on a PC.

When operating in this mode, a device can be transmitting
and receiving data simultaneously. This normally implies
that there is a separate media for the transmission and
reception of data.

Group Identity, a byte used within the EI Bisync protocol to
address a group of Slave devices which used together with
the Unit Identity (UID) forms a Slave device
communications address.

This mode of operation implies that at any time a device
can either transmit or receive data; simultaneous
transmission and reception is not possible.

PC 3000 Function Blocks

3-241

Appendix A

ICM

LCM

Master

Mnemonic

Multi-Dropped

Parity

Peer-to-peer

Polling

Point-to-point
Port

PLC

Protocol

PS

Remote Device

RS232, RS422,
RS485

Intelligent Communications Module - a general purpose
PC3000 communications module that provides 4 user
configurable special ports.

Local Control Module - the main processing module of a
PC3000 system that provides 3 user configurable serial
ports.

A master device is able to initiate a request to read or write
information from a remote device, and poll for information
from a number of remote devices. (see Slave).

A short text abbreviation which can be used within a
protocol to address a particular item, function or parameter
within a device. With the EI Bisync protocol, a mnemonic
can be any pair of letters and numbers, e.g., 'SP', 'PV', P1,
23",

A serial communications network in which there are many
Slave devices connected to a single Master device.

A check bit added to a byte for serial transmission to
enhance error detection. Odd parity implies that there is
always an odd number of bits transmitted for each byte;
even parity implies an even number of bits are always
transmitted.

This type of protocol allows any device connected to a
communications network to send information to, and
request information from any other device on the network.

A method of gathering information from a series of remote
devices connected via a serial link, by requesting
information from each one in turn. This implies that the
polling device is 'Master' of the link.

A serial link used to only connect two devices

A physical connection point on the PC3000 to which
remote devices can be connected using a serial link.

Programmable Logic Controller

Defines the rules by which two communicating devices
exchange information. This includes the methods used to
package and encode information being sent along a serial
link.

The PC3000 Programming Station

This is a general term for any device which is
communicating to the PC3000.

These refer to three different standards used for electrically
signalling information on a serial communications link .

3-242

PC 3000 Function Blocks

Appendix A

Serial Comms

Serial Link

SFC

Slave

Stop Bits

Time-out

Transaction

UID

A communications system where a stream of characters is
sent serially, i.e. the data is broken down into a series of bits
which are sent one after the other down a serial link.

This is a general term that refers to the physical media used
to connect two communicating devices and can be a single
wire, a twisted pair of wires, fibre optic cables etc.

Sequential Function Chart

A device configured so that it can respond to requests to
read or write information from a 'Master' device but can
never initiate communications requests.

A delay measured in terms of the time to transmit a bit,
which is inserted after transmitting a character. It is used to
ensure a minimum time is left between the transmission of
consecutive characters and therefore delimits each
character.

This is a technique used in most protocol drivers to detect
an error condition by measuring the time for an event, such
as the arrival of a message, to occur. If the time exceeds a
set value, the event is said to have timed-out.

A general term for an exchange of information between
devices and can imply a read or write operation.

Unit Identity, part of the EI Bisync Slave address which is
used with the GID.

PC 3000 Function Blocks

3-243

Appendix-B

APPENDIX B STANDARD COMMUNICATIONS ERROR CODES

The following codes apply to all drivers. Additiona; error codes will be used for all

drivers when protocol specific error codes are required.

Code Error Condition Slave Slave Master Remote
Driver Variable Driver t Variable
0 OK * * * *
1 ADDRESS STRING TOO SHORT * * * *
Port address too short
Remote address too short
Slave address too short
2 ILLEGAL DATABITS * * * *
3 ILLEGAL PARITY * * * *
4 ILLEGAL STOP BITS * * * *
5 RX BAUD RATE NOT AVAILABLE * * * *
6 TX BAUD RATE NOT AVAILABLE * * * *
7 RTS NOT AVAILABLE * * * *
8 CTS NOT AVAILABLE * * * *
11 ILLEGAL SLOT * %k * *
the first character in the Address
parameter is not in tjhe valid range of
'0'to '5'.
12 ILLEGAL PORT % % * *
the second character in the Address
parameter is not in the valid range for
the module, for example 'A' to 'C' for
an LCM port or ‘A’ to 'D' for an ICM
port.
3-244 PC 3000 Function Blocks

Appendix B

Code Error Condition Slave Slave Master Remote
Driver* Variable Driver 1 Variable
14 RX TX INCOMPATIBLE * * * *
16 NO REMOTE VARIABLE SERVICE * * * *
communications driver does not
support remote vars.
17 PORT IN USE * * * *
18 TOO MANY SLAVE VARIABLES *
19 TOO MANY DRIVER TYPES *

Note: T These errors are also applicable to Raw_Comms. driver

function block.

These error codes may be offset to a higher set of values for some drivers in order
not to clash with standard error codes associated with the particular protocol. For
example, error 1, ADDRESS STRING TOO SHORT is offset to 145 for the

JBus_Slave driver.

PC 3000 Function Blocks

3-245

Appendix-C

APPENDIX C ASCII TABLE
The ASCII code table is given general reference.

ASCII Table Hexadecimal - Character

00 NUL | 01SOH | 02STX 03 ETX 04 EOT 05ENQ | 06 ACK 07 BEL
08 BS 09 HT 0A NL 0B VT OC NP 0D CR OE SO OF Sl
10 DLE 11 DC1 12 DC2 13 DC3 14 DC4 15 NAK 16 SYN 17 ETB
18 CAN 19 EM 1A SUB 1B ESC 1CFS 1D GS 1E RS 1F US
20 SP 21 | 22 * 23 # 24 $ 25 % 26 | 27
28 | 29) 2A 28 + 2¢ , 2D - 2% . 2F /
30 0 31 2 32 2 33 3 34 4 355 36 6 37 7
38 8 39 9 3A 3B ; 3C < 3D = 3E . 3F

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 747 G
48 H 49 | 4A) 4B K AC L 4D M AE N 4F O
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5A Z 5B | 5C \ 5D] 5E - 5F _
60 61 «a 62 b 63 ¢ 64 d 65 e 66 f 67 g
68 h 69 i 6A 6B k 6C | 6D m 6E n 6F o
70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 vy 7A =z 7B { 7C | 7D } 7E - 7F DEL

3-246

PC 3000 Function Blocks

