EPC3000 Ergänzung zur Taupunktregelung

EPC3008, EPC3004

HA032994GER Ausgabe 1 Datum (Mai 2017)

Inhaltsverzeichnis EPC3008, EPC3004

Inhaltsverzeichnis

nhaltsverzeichnis	1
Einleitung	2
Eingebaute E/A	3
Taupunktregelung	4
Funktion Anschlüsse Physische Verbindungen Kontakteingänge für "Sondenreinigungsstart" und "Sondenprüfungsstart" Balkendiagramm auf der Startseite Kommunikation externer Sollwert Alarme Software-Verknüpfung Regler Alarm-Untersystem Nichtstandard-Parametereinstellungen Meldungen	5 6 6 6 9 9 11 12
Parameterhochstufungstabelle	
Configurationsparameter Zirkonialiste (ZIRC) So gelangen Sie zur Zirkonialiste Haupt-Teilliste (Überschrift Zirkonia) Konfigurations-Teilliste Reinigungs-Teilliste	14 14 15 17 18
HIDAGARIA - 12111912	1 (7)

Einführung EPC3008, EPC3004

Einführung

Dieses Dokument ist eine Ergänzung zur Bedienungsanleitung der Serie EPC3000, Bestellnummer HA032842GER. Bitte lesen Sie es zusammen mit der Bedienungsanleitung, die auf www.eurotherm.de erhältlich ist.

Die Regler der Serie EPC3000 sind anwendungsbezogen. Sie können den Regler mit bereits konfigurierter Anwendung bestellen oder ihn beim ersten Einschalten anhand der "Schnellkonfigurationscodes" konfigurieren (Auswahl "D" in Set 1/App). Diese Anwendung ist der Ausgangspunkt für die kundenspezifische Anpassung eines Prozesses.

Die Taupunktregelung ist nur bei EPC3008 und EPC3004 verfügbar.

Diese Anwendung ist der Ausgangspunkt für einen Taupunktregler, wie er häufig in endothermischen Gasgeneratoren zum Einsatz kommt. Diese spezielle Anwendung enthält keine PV-Analogrückübertragung; diese können Sie bei Bedarf jedoch problemlos hinzufügen.

Es handelt sich um einen Zweikanalregler für Anreicherung/Verdünnung; dabei ist EA1 der Anreicherungsausgang, EA2 der Verdünnungsausgang. EA4 ist ein Ausgang für ein Sondenabbrenn-Luftmagnetventil. Die Kontakteingänge für den Start der Spülung und der Impedanzprüfung befinden sich an LA bzw. LB.

Externe Sollwerte können zur Modbusadresse 277 geschrieben werden.

Inhalt dieser Ergänzung

Eingebaute Eingänge und Ausgänge

Allgemeine Beschreibung der Taupunktregelung

Anschlussklemmen

Software-Verknüpfung

Konfigurationsparameter

Einführung EPC3008, EPC3004

Eingebaute E/A

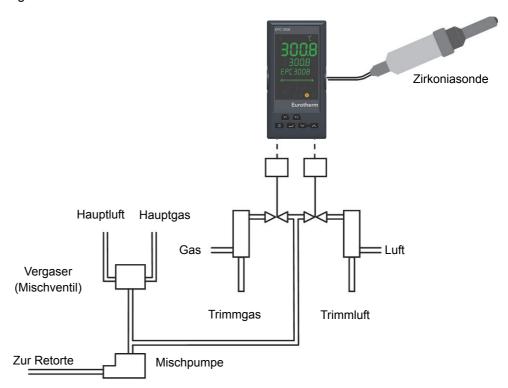
Haben Sie das Gerät als Taupunktregler bestellt, sollten die folgenden Ein- und Ausgänge ab Werk vorhanden sein.

Position	Standardoption	Nicht-Standard Option *	Anwendung
E/A1	Relais	Triac oder Logik	Für zeitproportionalen Ausgang konfiguriertes Anreicherungsrelais
E/A2	Relais	Triac oder Logik	Für zeitproportionalen Ausgang konfiguriertes Verdünnungsrelais
E/A3	Relais		Für Ein/Aus-Ausgang konfiguriertes allgemeines Alarmrelais
E/A4	Relais		Für Ein/Aus-Ausgang konfiguriertes Abbrennluft-Ausgangsrelais
D1	IE Optionskarte (4 X Digital-E/A + Ethernet + zweiter PV-Eingang)	I8 Optionskarte (8 X Digital-E/A + zweiter PV-Eingang)	Allgemeiner Meldungsausgang
LA	Logik-IP		Kontakteingang für Sondenspülungsstart
LB	Logik-IP		Kontakteingang für Sondenprüfungsstart
IP1	Thermoelement		Temperatureingang
IP2	Linearer mV		Zirkonia

^{*}Zum Einbau von Nichtstandard-Ein- und Ausgängen muss die Standardkonfiguration der Anwendung geändert werden.

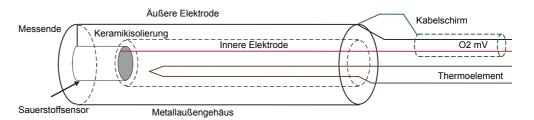
Taupunktregelung

Funktion


Der Zirkonia-Funktionsblock dient zur Regelung des Taupunktes in Prozessen z. B. in endothermischen Gasgeneratoren.

 Taupunkt. Der Taupunkt eines Gasgemisches ist die Temperatur, bei der die Kondensation und die Verdunstung des Wassergehalts (bei konstantem Druck) im Gleichgewicht sind.

Es gibt zwei gängige Anordnungen für taupunktgeregelte endothermische Gasgeneratoren.


- Ein mechanisch festgelegtes Luft/Gas-Gemisch wird in den Generator geleitet.
 Der Regler passt ein Trimmluft- und Trimmgas-Ventil zeitlich proportional an,
 ähnlich wie ein Ofen. Diese Anordnung kann bereits mit dem Regler der 2400er
 Serie in Verwendung sein, als deren Ersatz der EPC3008/04 gedacht ist.
- Anhand von Massendurchflussmessungen von Luft und Gas kann ein Verhältnisregler das Verhältnis präzise regeln. Dabei handelt es sich um eine Art Kaskadenregelung, die bereits mit einem Regler der 2700er Serie in Verwendung sein kann. Die Geräte der EPC3000-Serie können lediglich den Verhältnisanpassungsteil übernehmen.

Die Taupunktanwendung in den Geräten der PC3000-Serie ist speziell für Szenario 1 vorgesehen.

Anschlüsse

Das nachstehende Diagramm ist eine schematische Darstellung einer Zirkoniasauerstoffsonde.

Wenn sich die Sonde in einem Bereich mit starken Störungen befindet, sollten Sie geschirmte Kabel für die Spannungsquelle der Sonde (Sauerstoffsensor) verwenden. Verbinden Sie den Schirm mit dem Metallaußengehäuse der Sonde.

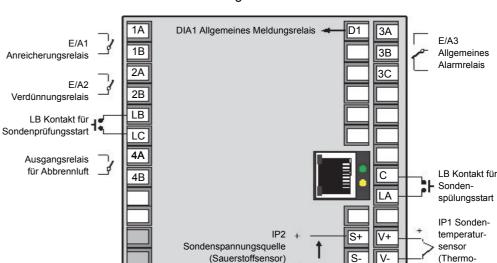
Per Systemvorgabe sollte der Temperatursensor (Thermoelement) der Sonde angeschlossen werden an:

Sensoreingang IP1 (Klemmen V+ und V-).

Die Spannungsquelle (Sauerstoffsensor) der Sonde sollte angeschlossen werden an:

Sensoreingang IP2 (Klemmen S+ und S-).

Die Zirkoniasonde erzeugt ein Millivolt-Signal (mV), das auf dem Verhältnis der Sauerstoffkonzentrationen zwischen der als Referenz dienenden Seite der Sonde (außerhalb des Ofens) und der Menge des Sauerstoffs, die sich im Ofen befindet, beruht.


Der Regler berechnet anhand der Temperatur- und der

Sauerstoffkonzentrationsignale den Taupunkt der Ofenatmosphäre. Es stehen Ihnen zwei Ausgänge zur Verfügung. Ein Ausgang ist an ein Ventil angeschlossen, das die Menge eines dem Ofen zugeführten Anreicherungsgases regelt. Der zweite Ausgang regelt die Menge der Luftzufuhr.

Diese Anschlüsse sind unten in den schematischen Darstellungen abgebildet.

Physikalische Verbindungen

Die E/A Zuordnung entspricht den in Abschnitt "Software-Verknüpfung" auf Seite 10 gezeigten Software-Verknüpfungen.

Standardverbindungen an EPC3004 oder EPC3008

Kontakteingänge für "Sondenspülungsstart" und "Sondenprüfungsstart"

Die Kontakteingänge sind dem Start der Sondenspülungs- und Sondenimpedanzprüfungsroutinen zugeordnet.

Die Sondenspülung wird nicht häufig bei endothermischen Gasgeneratoren eingesetzt. Allerdings kann die Durchführung regelmäßiger Sondenimpedanzprüfungen dazu beitragen, eine Verschlechterung der Sonden frühzeitig zu erkennen.

Balkendiagramm auf der Startseite

Das Balkendiagramm auf der Startseite zeigt den Arbeitsausgang des Regelkreises, in %. Der Bereich geht von -100 bis +100 %, wobei negative Werte eine Verdünnung und positive Werte eine Anreicherung darstellen.

Kommunikation externer Sollwert

Haben Sie einen externen Sollwert konfiguriert, kann der Wert mittels digitaler Kommunikation an die Modbusadresse 277 geschrieben werden.

Wenn sich der Regelkreis im externen automatischen Modus befindet, muss der RSP mindestens jede Sekunde eingelesen werden. Werden diese Aktualisierungen unterbrochen, löst dies einen Alarm aus und der Regelkreis geht in den lokalen automatischen Zwangsmodus über.

element)

Alarme

Zum Zweck dieser Anwendung werden Alarme als im Prozess auftretende Zustände oder Ereignisse definiert.

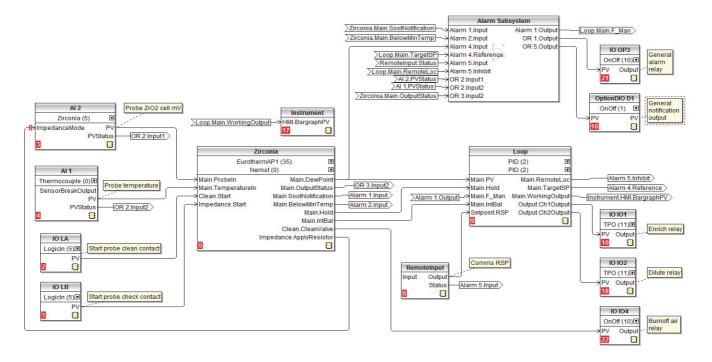
In dieser Anwendung sind sechs Alarme konfiguriert. Benötigen Sie einen Alarm für einen bestimmten Prozess nicht, können Sie ihn deaktivieren, indem Sie dessen "Typ" Parameter auf "Aus" setzen. Sowohl kontinuierliche als auch Chargenprozesse sind berücksichtigt.

Die Alarme sind in zwei Gruppen nach Schweregrad unterteilt; jede Gruppe setzt einen anderen Ausgang in Betrieb.

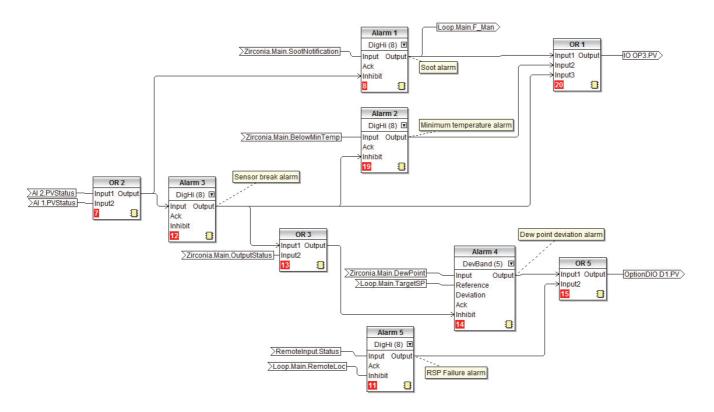
- Durch die Alarme 1, 2 und 3 wird das Umschaltrelais auf EA3 stromlos geschaltet (das Relais ist auch stromlos, wenn der Regler von der Stromversorgung getrennt wird). Dieses Relais zeigt abweichende Bedingungen an und kann daher auch verwendet werden, um Prozessverriegelungen auszulösen.
- Die Alarme 4, 5 und 6 führen dazu, dass sich der digitale Open Collector Ausgang auf Option DI1 schließt. Dieser dient als "Meldeausgang" und wird für weniger kritische Situationen genutzt, in denen der Regler die Regelvorgänge zwar fortsetzen kann, der Bediener aber auf einen bestimmten Umstand aufmerksam gemacht werden muss.

In dieser Anwendung sind die folgenden Alarme konfiguriert.

Alarm	Funktion
1	Rußalarm
	Der Rußalarm wird ausgelöst, sobald der berechnete Rußsättigungsgrenzwert länger als eine Minute überschritten wird.
	Prozessaktion:
	Während dieser Alarm aktiv ist, wird der Regelkreis in Zwangshand versetzt. Dabei wird die Anreicherung unverzüglich gestoppt, bis der Prozess wieder unterhalb der Sättungsgrenze ist und Sie den Alarm quittiert haben.
	Vorgesehene Unterdrückung:
	Der Rußalarm wird unterdrückt, wenn der Status eines der beiden Sondeneingänge "bad" lautet (erkannter offener Regelkreis oder hoher Widerstand). In solchen Fällen wird der Fühlerbruchalarm ausgelöst.
2	Mindesttemperaturalarm
	Der Mindesttemperaturalarm wird ausgelöst, wenn die Sondentemperatur unter die im Zirkoniablock spezifizierte Mindestbetriebstemperatur sinkt. Dies zeigt an, dass der Prozess nicht unter Kontrolle ist.
	Prozessaktion:
	Unterhalb der Mindestbetriebstemperatur wechselt der Regelkreis-PV-Status auf "bad" und der Regelkreis wird in Zwangshand versetzt. Per Systemvorgabe werden alle Anreicherungs- und Verdünnungsvorgänge gestoppt.
	Vorgesehene Unterdrückung:
	Der Mindesttemperaturalarm wird unterdrückt, sobald das Thermoelement bricht. (In diesem Fall wird der Fühlerbruchalarm ausgelöst.) Der Alarm wird auch dann unterdrückt, wenn der "C-Pegel Regelung unterdrücken"-Kontakteingang geschlossen ist.
3	Fühlerbruchalarm
	Der Fühlerbruchalarm wird ausgelöst, wenn der Zirkoniazellen- oder der Sondenthermoelementstatus "bad" meldet. Das bedeutet, dass der Prozess geregelt wird.
	Prozessaktion:
	Wenn ein Fühlerbruch vorliegt, wechselt der Regelkreis-PV-Status auf "bad" und der Regelkreis wird in Zwangshand versetzt. Per Systemvorgabe werden alle Anreicherungs- und Verdünnungsvorgänge gestoppt.
	Vorgesehene Unterdrückung:
	Der Fühlerbruchalarm wird nie unterdrückt.


Alarm	Funktion
4	Prozessabweichungsbandalarm
	Der Prozessabweichungsalarm wird ausgelöst, wenn der Regelreis-PV (der berechnete C-Pegel) von einem vorgegebenen Band um den
	Arbeitssollwert abweicht. Per Systemvorgabe ist die Bandbreite +/- 2 °C. Beim Prozessabweichungsbandalarm ist die Unterdrückung aktiviert. Das bedeutet, dass sich der PV zunächst im Abweichungsband befinden muss, bevor der Alarm auslösen kann.
	Prozessaktion:
	Keine.
	Vorgesehene Unterdrückung:
	Der Prozessabweichungsalarm wird unterdrückt, wenn ein Fühlerbruch vorliegt. Er wird auch unterdrückt, wenn der "C-Pegel Regelung unterdrücken"-Kontakt geschlossen ist und während sich das Gerät in der Konfigurationsebene befindet.
5	Externer Sollwertalarm.
	Der RSP-Alarm wird ausgelöst, sobald eine Aktualisierung des RSP unterbrochen wird. Dies zeigt eine Unterbrechung der Kommunikation an. Per Systemvorgabe muss der RSP jede Sekunde geschrieben werden, damit dieser Alarm nicht ausgelöst wird.
	Prozessaktion:
	Wenn dieser Alarm aktiv ist, ändert sich der RSP-Status auf "bad" und der Regelkreis greift auf den lokalen Sollwert zurück. Per Systemvorgabe ist die RSP-Verfolgung aktiviert, daher wird der Betriebspunkt beibehalten.
	Vorgesehene Unterdrückung:
	Der RSP-Alarm wird unterdrückt, sobald der externe automatische Modus nicht abgefragt wird. Er wird auch dann unterdrückt, wenn sich das Gerät in der Konfigurationszugriffsebene befindet.

Software-Verknüpfung


Die Software-Verknüpfung erfolgt über die Konfigurationssoftware iTools. Nähere Informationen siehe Kapitel "iTools" in der Bedienungsanleitung, Bestellnummer HA032842GER. Die folgenden Diagramme erscheinen, wenn Sie die Registerkarte "Grafische Verknüpfungen" in iTools öffnen.

Regler

Das Diagramm zeigt die Verknüpfungen der Regelfunktion für diese Anwendung. Bei Bedarf können Sie die Verknüpfungen ändern.

Alarm-Untersystem

A VORSICHT

VERSEHENTLICHES EINSCHALTEN

Hardware-Verriegelungen

Die Software-Verknüpfungen sind kein Ersatz für Hardware-Verriegelungen, wenn Sicherheitsanforderungen erfüllt werden müssen. Die Software-Verknüpfungen sind nur in Verbindung mit den separat vorgesehenen Hardware-Verriegelungen zu verwenden.

Eine Nichtbeachtung dieser Anweisungen kann zu Verletzungen oder Geräteschäden führen.

Nichtstandard-Parametereinstellungen

In dieser Tabelle finden Sie alle Geräteparameter, die von ihren Kaltstart-Voreinstellungen aus geändert werden.

Parameter	Wert
Al.2.Type	Zirkonia (5)
Al.2.Resolution	X (0)
AI.1.Resolution	XX (1)
Al.1.RangeHigh	600,0
AI.1.SensorBreakType	Niedrig (1)
RemoteInput.1.RangeHi	160,0
RemoteInput.1.RangeLo	-60,0
RemoteInput.1.ScaleHi	160,0
RemoteInput.1.ScaleLo	-60,0
RemoteInput.1.Resolution	XX (1)
RemoteInput.1.Units	C_F_K_Temp (1)
Loop.1.Config.Ch2ControlType	PID (2)
Loop.1.Config.PropBandUnits	Techn. Einheiten (0)
Loop.1.Setpoint.RangeHigh	160,0
Loop.1.Setpoint.RangeLow	-60,0
Loop.1.Setpoint.SPHighLimit	160,0
Loop.1.Setpoint.SPLowLimit	-60,0
Loop.1.Setpoint.RSP_En	Ein (1)
Loop.1.Setpoint.SPTracksRSP	Ein (1)
OptionDIO.1.Type	Ein/Aus (1)
IO.4.Type	DCOP (4)
IO.4.DemandHigh	500,0
IO.4.DemandLow	0,0
IO.4.OutputHigh	20,0
IO.4.OutputLow	4,0
Alarm.3.Type	Dig hoch (8)
Alarm.3.Latch	Auto (1)
Alarm.1.Type	Dig hoch (8)
Alarm.1.Latch	Auto (1)
Alarm.1.Delay	60,0
Alarm.2.Type	Dig hoch (8)
Alarm.2.Latch	Auto (1)
Alarm.2.StandbyInhibit	Ein (1)
Alarm.4.Type	Abw Band (5)
Alarm.4.Latch	Auto (1)

Parameter	Wert
Alarm.4.Block	Ein (1)
Alarm.4.StandbyInhibit	Ein (1)
Alarm.4.Deviation	5,0
Alarm.4.Hysteresis	0,5
Alarm.5.Type	Dig hoch (8)
Alarm.5.StandbyInhibit	Ein (1)
Alarm.6.Type	Dig hoch (8)

Meldungen

Die folgenden Prozessmeldungen können angezeigt werden:

#	Meldung	Parameter	Ор	Wert	Prio
1	RUSSALARM	Instrument.Diagnostics.AlarmStatusWord	М	1	Н
2	MINDESTTEMPERATURALARM	Instrument.Diagnostics.AlarmStatusWord	М	4	Н
3	FÜHLERBRUCHALARM	Instrument.Diagnostics.AlarmStatusWord	М	16	Н
4	ABWEICHUNGSALARM	Instrument.Diagnostics.AlarmStatusWord	М	64	Н
5	RSP-FEHLERALARM	Instrument.Diagnostics.AlarmStatusWord	М	256	Н
6	REGENERATIONSFEHLER NACH REINIGUNG	Zirconia.Clean.RecoveryWarn	<>	0	L
7	REINIGUNGSTEMPERATUR ÜBERSCHRITTEN	Zirconia.Clean.TempExceeded	<>	0	L
8	SONDENIMPEDANZ HOCH	Zirconia.Impedance.ImpedanceWarn	<>	0	L
9	REGENERATIONSFEHLER NACH SONDENPRÜFUNG	Zirconia.Impedance.RecoveryWarn	<>	0	L
10	ABBRENNVORGANG LÄUFT	Zirconia.Main.ProbeState	=	1	L
11	SONDENREGENERATION	Zirconia.Main.ProbeState	=	2	L
12	SONDENPRÜFUNG LÄUFT	Zirconia.Main.ProbeState	=	3	L
13	SONDENREGENERATION	Zirconia.Main.ProbeState	=	4	L

Parameter Promotion Tabellen

Wie in den folgenden Tabellen aufgeführt, können Sie den Zugriff auf Parameter in verschiedenen Ebenen ermöglichen.

#	Mnemonik	Ebene	Zugriff	Parameter/Bildlauf
1	C.POT	1 + 2	Schreibgeschützt	Zirconia.Main Carbon Potential
2	PRB.IN	1 + 2	Schreibgeschützt	Zirconia.Main Probe mV Input
3	TMP.IN	1 + 2	Schreibgeschützt	Zirconia.Main Temperature Input
4	W.OUT	1 + 2	Schreibgeschützt	Loop.Main Working Output
5	PF	2	Lese-/Schreibzugriff	Zirconia.Main Process Factor
6	H2F	2	Lese-/Schreibzugriff	Zirconia.Main H2 Factor
7	COF	2	Lese-/Schreibzugriff	Zirconia.Main CO Factor
8	R-L	1 + 2	Lese-/Schreibzugriff	Loop.Main Remote-Local select
9	SP.HI	2	Lese-/Schreibzugriff	Loop.Setpoint Setpoint High Limit
10	SP.LO	2	Lese-/Schreibzugriff	Loop.Setpoint.Setpoint Low Limit
11	SP1	1 + 2	Lese-/Schreibzugriff	Loop.Setpoint Setpoint 1
12	SP2	1 + 2	Lese-/Schreibzugriff	Loop.Setpoint Setpoint 2
13	C.TMR	1 + 2	Schreibgeschützt	Zirconia.Clean Time To Clean
14	CLEAN	1 + 2	Lese-/Schreibzugriff	Zirconia.Clean Start Clean
15	ABRT.C	1 + 2	Lese-/Schreibzugriff	Zirconia.Clean Abort Clean
16	C.RST	1 + 2	Lese-/Schreibzugriff	Zirconia.Clean Clean Message Reset
17	Z.STRT	1 + 2	Lese-/Schreibzugriff	Zirconia.Impedance Start Probe Check
18	IMPED	1 + 2	Lese-/Schreibzugriff	Zirconia.Impedance Probe Impedance Val
19	Z.ABRT	1 + 2	Lese-/Schreibzugriff	Zirconia.Impedance Abort Probe Check
20	Z.RST	1 + 2	Lese-/Schreibzugriff	Zirconia.Impedance Probe Check Message Reset
21	TUNE	2	Lese-/Schreibzugriff	Loop.Autotune Autotune Enable
22	PB.H	2	Lese-/Schreibzugriff	Loop.PID Ch1 Proportional Band
23	PB.C	2	Lese-/Schreibzugriff	Loop.PID Ch2 Proportional Band
24	TI	2	Lese-/Schreibzugriff	Loop.PID Integral Time
25	TD	2	Lese-/Schreibzugriff	Loop.PID Derivative Time
26	MR	2	Lese-/Schreibzugriff	Loop.PID Manual Reset
27	СВН	2	Lese-/Schreibzugriff	Loop.PID Cutback High Threshold
28	CBL	2	Lese-/Schreibzugriff	Loop.PID Cutback Low Threshold
29	OUT.LO	2	Lese-/Schreibzugriff	Loop.Output Output High Limit
30	OUT.HI	2	Lese-/Schreibzugriff	Loop.Output Output Low Limit
31	CS.ID	2	Lese-/Schreibzugriff	Intrument.Info Customer ID

Weitere Informationen zur Promote Funktion von Parametern entnehmen Sie bitte der Bedienungsanleitung, Bestellnr. HA032842GER.

Konfigurationsparameter

Zirkonia Menü (さに)

Über das Zirkonia Menü stellen Sie die Parameter eines Taupunktreglers ein.

Das Menü enthält Algorithmen für den Einsatz verschiedener gängiger Sauerstoffsonden. Folgende Sonden werden unterstützt:

- AccuCarb von Furnace Control Corp (FCC) (United Process Controls).
- Advanced Atmosphere Control Corp (AACC).
- AGA/Ferronova.
- Bosch Lambdasonden.
- Drayton (Therser).
- Eurotherm (einschließlich Barber Coleman).
- MacDhui (Australian Oxytrol).
- Marathon Monitors (United Process Controls).
- SSi (Super Systems Inc.).

So gelangen Sie zum Zirkonia Menü

Das Zirkonia Menü steht Ihnen auf Ebene 3 oder der Konfigurationsebene zur Verfügung. Wie Sie auf diese Ebene zugreifen, entnehmen Sie bitte der Bedienungsanleitung mit der Bestellnummer HA032842GER.

Der Zugriff auf das Zirkonia Menü wird im Folgenden zusammengefasst:

- 2. Drücken Sie ██, um das erste Untermenü (⋒用 П) auszuwählen.
- 4. Nachdem Sie das gewünschte Untermenü gewählt haben können Sie mit nacheinander die Parameter dieses Menüs aufrufen.

Anmerkungen:

- 1. In den folgenden Listen sind in der "Wert"-Spalte generell die Systemvorgaben angegeben.
- 2. R/W = Parameter kann in der angegebenen Ebene oder allen höheren Ebenen gelesen und überschrieben werden (falls keine Ebene angegeben ist, kann der Parameter generell gelesen und überschrieben werden)
- R/O = Parameter kann in der angegebenen Ebene oder allen höheren Ebenen nur gelesen werden (falls keine Ebene angegeben ist, kann der Parameter generell nur gelesen werden)

Haupt Untermenü (Überschrift Zirkonia)

Parameter Mnemonik	Parameter- name	Wert		Beschreibung	Zugriff
	der Parameter	Drücken Sie s	oder	t, um Werte zu ändern (bei Schreib-/Lesezugriff (R/W))	
drücken Sie					
STATE	PROBE STATE			Zeigt den aktuellen Betriebsstatus der Sonde und des Funktionsblocks an.	E3 R/O
		mEAS	0	Messvorgang läuft. Die Sonde funktioniert und der Regler berechnet die Eigenschaften der Atmosphäre (C-Pegel, Taupunkt und Sauerstoffkonzentration).	
		pnru	1	Abbrennen. Eine Sondenspülungssequenz ist im Gang. Das Abbrenn-Luftventil ist offen.	
		[Ln.	2	Regeneration nach der Spülung. Eine Sondenspülungssequenz ist im Gang. Der Block wartet darauf, dass sich die Zirkoniasonde nach dem Abbrennen regeneriert. Das Abbrenn-Luftventil ist geschlossen.	
		l mP	3	Impedanzprüfung. Eine Sondenprüfungssequenz ist im Gang. Der Lastwiderstand wird angelegt, und der Block wartet darauf, dass der Messwert sich einschwingt.	
		I mP.S	4	Regeneration nach Impedanzprüfung. Eine Sondenprüfungssequenz ist im Gang. Der Lastwiderstand wurde entfernt, und der Block wartet darauf, dass die Zirkoniasonde sich regeneriert.	
		mı n.E	5	Unter Mindesttemperatur. Die Sondentemperatur liegt unter der konfigurierten Mindesttemperatur. Alle berechneten Ausgänge werden auf 0,0 gestellt. Spülung und Sondenprüfungen werden unterdrückt.	
		ЬЯА	6	Eingang ungültig. Der Temperatur- und/oder Sonden-mV-Eingang zeigt nicht korrekt an. Alle berechneten Ausgänge werden auf 0,0 gestellt. Spülung und Sondenprüfungen werden unterdrückt.	
C.POT	CARBON			Der berechnete C-Pegel, in wt%C.	E3 R/O
	POTENTIAL			Der C-Pegel gibt die Fähigkeit einer bestimmten Atmosphäre an, Kohlenstoff in ein erhitztes Stahlwerkstück zu diffundieren, ausgedrückt als prozentualer Kohlenstoffgehalt im Stahl (nach Gewicht).	
				Der Wert wird auf den Bereich von 0 bis 2,55 wt%C gekappt.	
DEWPT	DEW POINT			Der berechnete Taupunkt (in der beim Gerät konfigurierten Temperatureinheit).	E3 R/O
				Der Taupunkt eines Gasgemisches ist die Temperatur, bei der die Kondensation und die Verdunstung des Wassergehalts (bei konstantem Druck) im Gleichgewicht sind. Der Taupunkt dient häufig als Prozessvariable zur Kontrolle eines endothermischen Gasgenerators.	
				Der Wert wird auf den Bereich gekappt, der −60 °C bis +160 °C entspricht.	
02	OXYGEN			Die berechnete Sauerstoffkonzentration in der gemessenen Atmosphäre (ausgedrückt in den durch den "Sauerstoffeinheit"-Parameter konfigurierten Einheiten).	E3 R/O
SAT.LM	SATURATION LIMIT			Der berechnete C-Pegel in wt%C, bei dessen Überschreitung sich auf den Oberflächen im Ofen vermutlich Rußablagerungen bilden. Dieser Wert wird auch als "Rußlinie" bezeichnet.	E3 R/O
OUT.ST	OUTPUT STRTUS	Good	0	Zeigt an, dass der Status der berechneten C-Pegel-, Taupunkt- und Sauerstoffausgänge korrekt ist.	E3 R/O
		ЬЯЬ	1	Wenn der Status "bad" ist, sind die Werte nicht zuverlässig.	
500T	500T	4E5	1	Dieses Flag steht auf "Ja", wenn die folgende Bedingung erfüllt ist:	E3 R/O
	NOTIFICATION			C-Pegel > (Sättigungsgrenze × Rußskalar)	
				D. h., wenn der C-Pegel im Ofen hoch genug ist, um möglicherweise Rußablagerungen auf den Oberflächen im Ofen zu verursachen. Der "Rußskalar"-Parameter ermöglicht die Definition eines Toleranzwerts.	
				Normalerweise wird dies mit einem Digitalalarm verknüpft.	
		По	0	Der Ofen läuft normal unterhalb der Kohlenstoffsättigungsgrenze.	1
COF	CO FRCTOR	20.0		Definiert den CO-Faktor in %CO. Die Systemvorgabe ist 20,0 %.	E3 R/W
				Dieser Faktor wird zur Berechnung des C-Pegels herangezogen. Nominal steht er für den prozentualen Anteil des Kohlenmonoxids in der Ofenatmosphäre, nach Volumen. In der Praxis wird er jedoch häufig als allgemeiner Kompensationsfaktor verwendet, um den berechneten C-Pegel mit dem per Blechprüfung oder Multigas-Analyse ermittelten Wert in Einklang zu bringen.	
				Um drastische Veränderungen beim Reglerausgang zu vermeiden, wird jedes Mal, wenn sich dieser Wert ändert, ein Integralausgleich ausgegeben.	

Parameter Mnemonik	Parameter- name	Wert		Beschreibung	Zugriff
	der Parameter	Drücken Sie s	oder	 t, um Werte zu ändern (bei Schreib-/Lesezugriff (R/W))	
H2F	H2 FRCTOR	40.0		Definiert den "H ₂ -Faktor" in %H ₂ . Die Systemvorgabe ist 40,0 %.	E3 R/W
				Dieser Faktor wird zur Berechnung des Taupunkts herangezogen. Nominal steht er für den prozentualen Anteil des Wasserstoffs in der Ofenatmosphäre, nach Volumen. In der Praxis wird er jedoch häufig als allgemeiner Kompensationsfaktor verwendet, um den berechneten Taupunkt mit den beobachteten Werten in Einklang zu bringen.	
				Um drastische Veränderungen beim Reglerausgangzu vermeiden, wird jedes Mal, wenn sich dieser Wert ändert, ein Integralausgleich ausgegeben.	
PF	PROCESS			Dieser Wert wird nur verwendet, wenn der Sondentyp auf MMI gestellt ist.	E2 R/W
	FACTOR			Er definiert einen Prozessfaktor, der als allgemeiner "aufgerollter" Kompensationsfaktor dient, um die verschiedenen Parameter des Ofens, seiner Atmosphäre und der behandelten Last zu berücksichtigen.	
				Er dient häufig dazu, den berechneten C-Pegel und/oder den Taupunkt in Einklang mit den beobachteten Werten zu bringen.	
PRB.IN	PROBE MV INPUT			Spannungsmesswert der Zirkoniasonde (in Millivolt). Der akzeptable Bereich geht von 0 mV bis 1800 mV.	E1 R/O
				Falls erforderlich, kann über den "Sonde Offset"-Parameter ein Kompensations-Offset auf diesen Wert angelegt werden.	
TMP.IN	TEMPERATURE INPUT			Die Temperatur der gemessenen Atmosphäre. Diese kommt häufig vom Thermoelement an der Spitze der Zirkoniasonde.	E1 R/O
				Falls erforderlich, kann über den "Temperatur Offset"-Parameter ein Kompensationsausgleich auf diesen Wert angelegt werden.	
P.BIAS	PROBE OFFSET	0		Falls erforderlich, kann hier ein Offset-Wert spezifiziert werden (in mV). Dieser dient als Kompensationsfaktor für das eingehende "Sonden-mV-Eingangs"-Signal.	E3 R/W
T.BIRS	TEMPERATURE OFFSET	0.0		Falls erforderlich, kann ein Temperatur-Offset spezifiziert werden. Dieser wird auf das eingehende "Temperatureingangssignal" angelegt.	E3 R/W
	Halten	Ja Nein	1 0	Dieses Flag steht auf "Ja", wenn der Block eine Sondenspülung oder eine Sondenimpedanzprüfung ausführt.	Nur in iTools verfügbar
				Normalerweise dient dieser Ausgang in einer Regelstrategie dazu, den Regelkreis in die Betriebsart "HALTEN" zu versetzen.	
	IntBal	Ja Nein	1	Normalerweise wird über diesen Ausgang in einer Regelstrategie ein Integralausgleich ausgelöst, um zu verhindern, dass sprunghafte Veränderungen in der Prozessvariablen Störungen im Regelkreisausgang verursachen. Verbinden Sie diesen Ausgang mit dem Integralausgleichseingang im Regelkreisblock.	Nur in iTools verfügbar
				Bei bestimmten Ereignissen fordert der Zirkoniablock einen Integralausgleich an, z. B. beim Wechsel der Gasfaktoren oder beim Übergang in den Messzustand.	
	BelowMinTemp	Ja Nein	1 0	Dieses Flag zeigt an, dass der Sondentemperatureingang unter dem "Mindesttemperatur"-Parameter liegt. Häufig verwendet, um Alarme und Ähnliches zu unterdrücken.	Nur in iTools verfügbar

Konfiguration Untermenü

Parameter Mnemonik	Parameter- name	Wert		Beschreibung	Zugriff
Zur Auswahl d		Drücken S	l Sie s oder	l t, um Werte zu ändern (bei Schreib-/Lesezugriff (R/W))	
drücken Sie C)				
PROBE	PROBE TYPE			Auswahl des Sondentyps	Konf. R/W
		mml	25	Sonden von Marathon Monitors (United Process Controls).	E3 R/O
		AHEE	26	Sonden der ehemaligen Advanced Atmosphere Control Corp. (AACC)	
		dr AY	27	Sonden von Drayton Probes	
		Ясси	28	Sonden von Furnace Control Corp. (FCC) (United Process Controls).	
		55,	29	Sonden von Super Systems Inc. (SSi).	
		mAc.d	30	Sonden von MacDhui (Australian Oxytrol).	-
		bo5h	31	Lambdasonden von Bosch.	
		ЬAr.C	32	Sonden von Barber Coleman.	-
		FErr	33	Berechnungen von AGA/Ferronova.	-
		πЦ	34	Keine Berechnung. Die Sondenspannung wird direkt an den C-Pegel Ausgang geleitet.	
		AP!	35	Sonden der API-Serie von Eurotherm by Schneider Electric	
		AEP	36	Sonden der ACP-Serie von Eurotherm by Schneider Electric	1
		02	3	Die Sonde wird nur für die Sauerstoffmessung verwendet. Deaktiviert die C-Pegel- und Taupunktberechnungen.	
				Wählen Sie diese Option beispielsweise für einen Sauerstoffabgleichregler in einem Befeuerungssystem.	
02.T Y P	OXYGEN			Wählt die Methode für die Berechnung der Sauerstoffkonzentration.	Konf. R/W
	CALCULATION			Für die meisten Sonden ist die Nernst-Gleichung am besten geeignet. Es sind auch andere Methoden für Bosch Lambdasonden und AGA/Ferronova-Sonden verfügbar. Alternativ besteht auch die Möglichkeit, die Sauerstoffkonzentration von einem berechneten C-Pegel zurückzurechnen (NernstCP).	E3 R/O
		NErn	0	Die Standard-Nernst-Gleichung.	
		bo5h	1	Eine abgewandelte Nernst-Gleichung für Bosch Lambdasonden.	
		FErr	3	Eine alternative Methode von AGA/Ferronova, basierend auf empirischen Daten.	
		[P	4	Die Sauerstoffkonzentration wird anhand des C-Pegels und einer "idealen" CO-Konzentration zurückgerechnet.	
TNU.50	OXYGEN UNITS			Legt fest, wie der Anteil des O ₂ in der gemessenen Atmosphäre ausgedrückt wird.	Konf. R/W E3 R/O
		P.P5	0	Teildruck	
		Pent	2	Prozent	
		PPm	6	Teile pro Million	
CO.I DL	IDEAL CO	20.0		Dieser Wert wird nur verwendet, wenn die Sauerstoffberechung auf CP gestellt ist.	E3 R/W
				Er steht für den prozentualen Anteil des Kohlenmonoxids in der Ofenatmosphäre, nach Volumen. Der Funktionsblock verwendet den übermittelten Wert als Kalibrierfaktor für die Rückberechnung der Sauerstoffkonzentration anhand des berechneten C-Pegels.	
MIN.T	MUNIMIM	720.0		Definiert die Mindestbetriebstemperatur der Zirkoniasonde.	E3 R/W
	TEMPERATURE			Falls der Temperatureingang unter der Mindesttemperatur liegt, führt der Block keine Berechnung, Spülung oder Impedanzprüfung durch	
500T.K	SOOT SCALAR	1.00		Dieser multiplikative Skalierfaktor kann verwendet werden, um die berechnete Rußschwelle zu erhöhen oder zu senken. Dieses Flag steht auf "Ja", wenn die folgende Bedingung erfüllt ist:	E3 R/W
				Kohlenstoffpotenzial > (Sättigungsgrenze × Rußskalar)	
				Für verschiedene Legierungen können verschiedene "Rußskalarwerte" geeignet sein. Der Wert kann auch herangezogen werden, um sich dem Karbidgrenzwert zu nähern.	

Sondenspülung Untermenü

Parameter	Parameter-	Wert		Beschreibung	Zugriff
Mnemonik	name				
Zur Auswahl		Drücken S	sie s od	er t, um Werte zu ändern (bei Schreib-/Lesezugriff (R/W))	
drücken Sie C					
ELN.EN	ENABLE CLEANING	On OFF	0	Bei "Ein" wird die automatische Sondenspülung aktiviert, bei "Aus" wird sie abgeschaltet. Unabhängig von dieser Einstellung kann eine Spülung auch immer über den "Spülungsstart"-Eingang gestartet werden.	E3 R/W
ELEAN	START CLEAN	No YES	0	Durch eine steigende Flanke wird eine Sondenspülungssequenz gestartet.	E2 R/W
ABRT.C	ABORT CLEAN	No YES	0	Durch eine steigende Flanke wird der Sondenabbrennvorgang abgebrochen. Die Messung wird fortgesetzt, nachdem sich die Sonde regeneriert hat.	E2 R/W
	Clean Valve	oΠ OFF	0	Regelausgang für das Abbrenn-Luftventil. Aus = Ventil geschlossen, Ein = Ventil offen. Normalerweise wird dies mit einem Digital- oder Relaisausgang verknüpft.	Nur in iTools verfügbar
C.TMR	TIME TO CLEAN	04:00		Die verbleibende Zeit bis zum geplanten Start der nächsten automatischen Sondenspülungssequenz. Systemvorgabe: 4 Stunden.	E1 R/O
EMV	LAST PROBE MV	0		Der Sonden-mV-Messwert nach dem letzten Abbrennen.	E3 R/O
				Wenn der Wert über 200 mV liegt, kann dies auf eine Verschlechterung oder eine schlechte Einstellung der Abbrennluft oder auf eine Sondenverschlechterung durch starke Rußbildung hinweisen.	
C.RCOV	LAST RECOVERY TIME	0.0		Die Zeit, die die Sonde benötigt, um sich auf 95 % ihres Werts vor dem letzten Abbrennen zu regenerieren.	E3 R/O
	RecoveryWarn	Nein	0	Weist auf eine Sondenverschlechterung hin.	Nur in iTools
		Ja	1	Dieses Flag steht auf "Ja", wenn der Sonden-mV-Messwert nicht innerhalb der zulässigen Erholzeitwieder 95 % des vor dem letzten Abbrennen gemessenen Werts erreicht hat (Einstellung über "Max. Erholzeit nach der Spülung").	verfügbar
	Temp erreicht	Nein Ja	0	Dieses Flag steht auf "Ja", wenn die Temperatur der Sonde beim letzten Abbrennen die konfigurierte Höchsttemperatur überschritten hat. Dies kann auf eine möglicherweise schädliche exotherme Reaktion an der Sondenoberfläche hinweisen.	Nur in iTools verfügbar
	Abgebrochen	Nein Ja	0	Dieses Flag steht auf "Ja", wenn der letzte Abbrennvorgang abgebrochen wurde, bevor er beendet war.	Nur in iTools verfügbar
C.RST	CLERN MESSAGE RESET	No YES	0	Eine steigende Flanke an diesem Eingang setzt die Statusindikatoren "RecoveryWarn", "Temp exceeded" und "Aborted" zurück.	E2 R/W
BRNOF	BURN OFF TIME	180.0		Konfiguriert die Dauer der Abbrennphase in der Sondenspülungssequenz. Systemvorgabe: 3 Minuten.	E3 R/W
C.FRQ	ELEAN FREQUENCY	04:00		Konfiguriert den Intervall zwischen den automatischen Sondenspülungen. Systemvorgabe: 4 Stunden.	E3 R/W
мях.т	MRXIMUM TEMPERRTURE	1 100.0		Stellt die beim Sondenabbrennvorgang zulässige Höchsttemperatur ein. Bei Überschreiten dieser Temperatur wird der Abbrennvorgang abgebrochen. Systemvorgabe. 1100 °C.	E3 R/W
E.MIN.R	MIN CLEAN RECOVERY TIME	1.0		Stellt die zulässige minimale Erholzeit nach dem Abbrennvorgang ein; erst danach wird die Messung wieder aufgenommen. Der einstellbare Bereich liegt zwischen 0 und 90 Sekunden. Systemvorgabe: 1 Sekunde.	E3 R/W
E.MRX.R	MAX CLEAN RECOVERY TIME	90.0		Stellt die zulässige maximale Erholzeit nach dem Abbrennvorgang ein; erst danach wird die Messung wieder aufgenommen.	E3 R/W
				Wenn sich die Sonde nach Ablauf dieser Zeit noch nicht regeneriert hat, wird die Messung zwangsweise wieder aufgenommen und der "RecoveryWarn"-Indikator wird gesetzt.	
				Systemvorgabe: 90,0 Sekunden. Maximal einstellbarer Bereich 499h:59m:59s	

Impedanz Untermenü

Parameter	Parameter-	Wert		Beschreibung	Zugriff	
Mnemonik name Zur Auswahl der Parameter drücken Sie 👉		Drücken Sie s oder t, um Werte zu ändern (bei Schreib-/Lesezugriff (R/W))				
Z.RUN	START PROBE CHECK	No YES	1	Durch eine steigende Flanke wird eine Impedanzprüfung gestartet. Stellen Sie sicher, dass Atmosphäre und Temperatur stabil sind, bevor Sie eine Prüfung starten, da es sonst zu Fehlmessungen kommen kann. Die Sondenimpedanzprüfung ist ein nützlicher Indikator des Sondenzustands. Befolgen Sie die Empfehlungen des Sondenherstellers. Als allgemeine Richtschnur empfiehlt es sich, die Sondenimpedanz wöchentlich zu prüfen, bzw. in kürzeren Abständen, wenn die Sonde sich dem Ende ihrer Lebensdauer nähert. Typischerweise weist eine Sondenimpedanz über 50 kΩ darauf hin, dass die Sonde ersetzt werden sollte.	E3 R/W	
Z.ABRT	ABORT PROBE CHECK	No YES	0	Durch eine steigende Flanke wird eine laufende Impedanzprüfung abgebrochen. Der Normalbetrieb wird fortgesetzt, nachdem sich die Sonde regeneriert hat.	E3 R/W	
IMPED	PROBE IMPEDANCE	0.0		Die gemessene Impedanz der Sonde (in $k\Omega$)	E1 R/O	
	apply resistor	Nein Ja	0	Regelausgang für die Anwendung des Prüfwiderstandes über die gesamte Sonde hinweg. Nein = kein Widerstand, Ja = Widerstand anlegen. Der Regler verfügt zu diesem Zweck über einen in den Analogeingang eingebauten Widerstand. Dieser Ausgang sollte mit dem "ApplyResistor"-Eingang am entsprechenden Analogeingangsblock verbunden werden.	Nur in iTools verfügbar	
	impedance warn	Nein Ja	0	Dieses Flag steht auf "Ja", wenn die gemessene Impedanz den Impedanzgrenzwert übersteigt.	Nur in iTools verfügbar	
	lasr rcov time			Die Zeit, die der Sonden-mV-Messwert benötigt, um wieder 99 % seines vor der Prüfung gemessenen Werts zu erreichen.	Nur in iTools verfügbar	
	Recovery notification	Nein Ja	0	Dieses Flag steht auf "Ja", wenn der Sonden-mV-Messwert nicht innerhalb der zulässigen Erholzeit wieder 99% des vor der letzten Prüfung gemessenen Werts erreicht hat (Einstellung über "Max. Erholzeit nach der Prüfung").	Nur in iTools verfügbar	
	aborted	Nein Ja	0	Dieses Flag steht auf "Ja", wenn die letzte Impedanzprüfung abgebrochen wurde, bevor sie beendet war.	Nur in iTools verfügbar	
Z.MAX.R	MAX CHECK RECOVERY TIME	30.0		Die maximal zulässige erholzeit nach Entfernung des Widerstands und vor Wiederaufnahme der Messung	E3 R/W	
Z.THRS	IMPEDANCE THRESHOLD	50.0		Definiert einen Alarmgrenzwert für die Sondenimpedanz (in $k\Omega$). Wenn die gemessene Sondenimpedanz diesen Wert überschreitet, springt der "Impedanzwarnparameter" auf "Ja".	E3 R/W	
Z.RST	PROBE CHECK MESSAGE RESET	∏o YES	0	Eine steigende Flanke an diesem Eingang setzt die Statusflags "ImpedanceWarn", "RecoveryWarn" und "Aborted" zurück.	E3 R/W	

Für lokale Inhalte diesen Code einscannen

Schneider Electric Systems Germany GmbH >EUROTHERM< Ottostraße 1 65549 Limburg/LAhn

Telefon: +44 (0) 6431 2980 www.eurotherm.de

Da sich Normen, Spezifikationen und Entwürfe mit der Zeit ändern können, bitten wir darum, sich die in diesem Dokument veröffentlichten Informationen bestätigen zu lassen.

© 2017 Eurotherm Limited. Alle Rechte vorbehalten.

HA032994GER Ausgabe 1 CN35882